Cargando…
Deep Learning for Dental Diagnosis: A Novel Approach to Furcation Involvement Detection on Periapical Radiographs
Furcation defects pose a significant challenge in the diagnosis and treatment planning of periodontal diseases. The accurate detection of furcation involvements (FI) on periapical radiographs (PAs) is crucial for the success of periodontal therapy. This research proposes a deep learning-based approa...
Autores principales: | Mao, Yi-Cheng, Huang, Yen-Cheng, Chen, Tsung-Yi, Li, Kuo-Chen, Lin, Yuan-Jin, Liu, Yu-Lin, Yan, Hong-Rong, Yang, Yu-Jie, Chen, Chiung-An, Chen, Shih-Lun, Li, Chun-Wei, Chan, Mei-Ling, Chuo, Yueh, Abu, Patricia Angela R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376376/ https://www.ncbi.nlm.nih.gov/pubmed/37508829 http://dx.doi.org/10.3390/bioengineering10070802 |
Ejemplares similares
-
Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph
por: Li, Chun-Wei, et al.
Publicado: (2021) -
A High-Accuracy Detection System: Based on Transfer Learning for Apical Lesions on Periapical Radiograph
por: Chuo, Yueh, et al.
Publicado: (2022) -
Improving Dental Implant Outcomes: CNN-Based System Accurately Measures Degree of Peri-Implantitis Damage on Periapical Film
por: Chen, Yi-Chieh, et al.
Publicado: (2023) -
Automatic Feature Segmentation in Dental Periapical Radiographs
por: Ari, Tugba, et al.
Publicado: (2022) -
Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs
por: Endres, Michael G., et al.
Publicado: (2020)