Cargando…
AFNet Algorithm for Automatic Amniotic Fluid Segmentation from Fetal MRI
Amniotic Fluid Volume (AFV) is a crucial fetal biomarker when diagnosing specific fetal abnormalities. This study proposes a novel Convolutional Neural Network (CNN) model, AFNet, for segmenting amniotic fluid (AF) to facilitate clinical AFV evaluation. AFNet was trained and tested on a manually seg...
Autores principales: | Costanzo, Alejo, Ertl-Wagner, Birgit, Sussman, Dafna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376488/ https://www.ncbi.nlm.nih.gov/pubmed/37508809 http://dx.doi.org/10.3390/bioengineering10070783 |
Ejemplares similares
-
Automatic Artifact Detection Algorithm in Fetal MRI
por: Lim, Adam, et al.
Publicado: (2022) -
Fet-Net Algorithm for Automatic Detection of Fetal Orientation in Fetal MRI
por: Eisenstat, Joshua, et al.
Publicado: (2023) -
Fetal Organ Anomaly Classification Network for Identifying Organ Anomalies in Fetal MRI
por: Lo, Justin, et al.
Publicado: (2022) -
Cross Attention Squeeze Excitation Network (CASE-Net) for Whole Body Fetal MRI Segmentation
por: Lo, Justin, et al.
Publicado: (2021) -
Stratification of Amniotic Fluid Cells and Amniotic Fluid by Sex Opens Up New Perspectives on Fetal Health
por: Campesi, Ilaria, et al.
Publicado: (2023)