Cargando…

Serum Urate Levels and Ultrasound Characteristics of Carotid Atherosclerosis across Obesity Phenotypes

Background: Existing evidence suggests a close link among high levels of serum urate (SU), obesity and carotid atherosclerosis. The aim of the present study was to evaluate the interrelations between SU levels and carotid atherosclerosis in subjects with different obesity phenotypes. Methods: In thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Efremova, Daniela, Ciobanu, Natalia, Glavan, Danu, Leahu, Pavel, Racila, Renata, Bălănuță, Tatiana, Matei, Alexandru, Vasilieva, Maria, Cheptea, Cristina, Bîtcă, Paula, Damian, Cristina, Bondarciuc, Ana, Bejenari, Irina, Cojocaru, Adelina, Manea, Diana, Ciocanu, Mihail, Zota, Eremei, Ciolac, Dumitru, Groppa, Stanislav A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376805/
https://www.ncbi.nlm.nih.gov/pubmed/37509536
http://dx.doi.org/10.3390/biomedicines11071897
Descripción
Sumario:Background: Existing evidence suggests a close link among high levels of serum urate (SU), obesity and carotid atherosclerosis. The aim of the present study was to evaluate the interrelations between SU levels and carotid atherosclerosis in subjects with different obesity phenotypes. Methods: In this study, a total of 2076 subjects (mean age 48.1 ± 13.1 years; 1307 women) were recruited: 59 with general obesity, 616 with central obesity, 715 with mixed (general–central) obesity and 686 non-obese. Anthropometric measurements, vascular risk factors, blood biochemistry analysis (including SU levels), and carotid ultrasound were performed. Ultrasound assessment included evaluation of intima-media thickness (IMT) and plaque characteristics, including number, total area and type (vulnerable vs. stable) of plaques. Results: After adjustment for potential confounders, the highest levels of SU were observed in subjects with mixed obesity, followed by subjects with central obesity, general obesity and the non-obese (309.4 ± 82.2 vs. 301.2 ± 73.1 vs. 272.9 ± 61.8 vs. 234.2 ± 59.8 μmol/L, respectively; F = 149.2, post hoc p < 0.001). Similarly, subjects with mixed and central obesity presented higher values of IMT compared to subjects with general obesity and the non-obese (0.68 ± 0.16 vs. 0.67 ± 0.16 vs. 0.62 ± 0.14 vs. 0.57 ± 0.13 mm, respectively; F = 54.2, post hoc p < 0.001). No difference in number, total area and type of plaques among obesity groups were attested (all p > 0.05). Significantly higher IMT values were observed in subjects with increased SU levels compared to subjects with normal SU levels (0.70 ± 0.10 vs. 0.62 ± 0.14 mm, p = 0.02) only within the central obesity group. Increasing levels of SU were associated with a higher frequency of increased IMT only in subjects with central obesity (OR 1.033, 95% CI 1.025–1.041). Similarly, SU levels yielded a satisfactory performance in detecting subjects with increased IMT (AUC 0.65, 95% CI 0.50–0.73, subjects with carotid plaques (0.62, 95% CI 0.55–0.68) and subjects with vulnerable plaque types (0.68, 0.59–0.76) only within the central obesity group. Conclusions: Among the studied obesity types, the association between SU levels and markers of carotid atherosclerosis was of particular significance in subjects with central obesity.