Cargando…
ClearF++: Improved Supervised Feature Scoring Using Feature Clustering in Class-Wise Embedding and Reconstruction
Feature selection methods are essential for accurate disease classification and identifying informative biomarkers. While information-theoretic methods have been widely used, they often exhibit limitations such as high computational costs. Our previously proposed method, ClearF, addresses these issu...
Autores principales: | Wang, Sehee, Kim, So Yeon, Sohn, Kyung-Ah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376817/ https://www.ncbi.nlm.nih.gov/pubmed/37508851 http://dx.doi.org/10.3390/bioengineering10070824 |
Ejemplares similares
-
ClearF: a supervised feature scoring method to find biomarkers using class-wise embedding and reconstruction
por: Wang, Sehee, et al.
Publicado: (2019) -
Voxel‐wise supervised analysis of tumors with multimodal engineered features to highlight interpretable biological patterns
por: Escobar, Thibault, et al.
Publicado: (2022) -
Semi-Supervised Fuzzy Clustering with Feature Discrimination
por: Li, Longlong, et al.
Publicado: (2015) -
Supervised PolSAR Image Classification with Multiple Features and Locally Linear Embedding
por: Zhang, Qiang, et al.
Publicado: (2018) -
Feature selection and semi-supervised clustering using multiobjective optimization
por: Saha, Sriparna, et al.
Publicado: (2014)