Cargando…
The Blood Concentration of Metallic Nanoparticles Is Related to Cognitive Performance in People with Multiple Sclerosis: An Exploratory Analysis
The imbalance in the concentration of metallic nanoparticles has been demonstrated to play an important role in multiple sclerosis (MS), which may impact cognition. Biomarkers are needed to provide insights into the pathogenesis and diagnosis of MS. They can be used to gain a better understanding of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376844/ https://www.ncbi.nlm.nih.gov/pubmed/37509462 http://dx.doi.org/10.3390/biomedicines11071819 |
_version_ | 1785079373508902912 |
---|---|
author | de Oliveira, Marcela Santinelli, Felipe Balistieri Lisboa-Filho, Paulo Noronha Barbieri, Fabio Augusto |
author_facet | de Oliveira, Marcela Santinelli, Felipe Balistieri Lisboa-Filho, Paulo Noronha Barbieri, Fabio Augusto |
author_sort | de Oliveira, Marcela |
collection | PubMed |
description | The imbalance in the concentration of metallic nanoparticles has been demonstrated to play an important role in multiple sclerosis (MS), which may impact cognition. Biomarkers are needed to provide insights into the pathogenesis and diagnosis of MS. They can be used to gain a better understanding of cognitive decline in people with MS (pwMS). In this study, we investigated the relationship between the blood concentration of metallic nanoparticles (blood nanoparticles) and cognitive performance in pwMS. First, four mL blood samples, clinical characteristics, and cognitive performance were obtained from 21 pwMS. All participants had relapse–remitting MS, with a score of ≤4.5 points in the expanded disability status scale. They were relapse-free in the three previous months from the day of collection and had no orthopedic, muscular, cardiac, and cerebellar diseases. We quantified the following metallic nanoparticles: aluminum, chromium, copper, iron, magnesium, nickel, zinc, and total concentration. Cognitive performance was measured by mini-mental state examination (MMSE) and the symbol digit modalities test (SDMT). Pearson’s and Spearman’s correlation coefficients and stepwise linear regression were calculated to assess the relationship between cognitive performance and blood nanoparticles. We found that better performance in SDMT and MMSE was related to higher total blood nanoparticles (r = 0.40; p < 0.05). Also, better performance in cognitive processing speed and attention (SDMT) and mental state (MMSE) were related to higher blood iron (r = 0.44; p < 0.03) and zinc concentrations (r = 0.41; p < 0.05), respectively. The other metallic nanoparticles (aluminum, chromium, copper, magnesium, and nickel) did not show a significant relationship with the cognitive parameters (p > 0.05). Linear regression estimated a significant association between blood iron concentration and SDMT performance. In conclusion, blood nanoparticles are related to cognitive performance in pwMS. Our findings suggest that the blood concentration of metallic nanoparticles, particularly the iron concentration, is a promising biomarker for monitoring cognitive impairment in pwMS. |
format | Online Article Text |
id | pubmed-10376844 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103768442023-07-29 The Blood Concentration of Metallic Nanoparticles Is Related to Cognitive Performance in People with Multiple Sclerosis: An Exploratory Analysis de Oliveira, Marcela Santinelli, Felipe Balistieri Lisboa-Filho, Paulo Noronha Barbieri, Fabio Augusto Biomedicines Article The imbalance in the concentration of metallic nanoparticles has been demonstrated to play an important role in multiple sclerosis (MS), which may impact cognition. Biomarkers are needed to provide insights into the pathogenesis and diagnosis of MS. They can be used to gain a better understanding of cognitive decline in people with MS (pwMS). In this study, we investigated the relationship between the blood concentration of metallic nanoparticles (blood nanoparticles) and cognitive performance in pwMS. First, four mL blood samples, clinical characteristics, and cognitive performance were obtained from 21 pwMS. All participants had relapse–remitting MS, with a score of ≤4.5 points in the expanded disability status scale. They were relapse-free in the three previous months from the day of collection and had no orthopedic, muscular, cardiac, and cerebellar diseases. We quantified the following metallic nanoparticles: aluminum, chromium, copper, iron, magnesium, nickel, zinc, and total concentration. Cognitive performance was measured by mini-mental state examination (MMSE) and the symbol digit modalities test (SDMT). Pearson’s and Spearman’s correlation coefficients and stepwise linear regression were calculated to assess the relationship between cognitive performance and blood nanoparticles. We found that better performance in SDMT and MMSE was related to higher total blood nanoparticles (r = 0.40; p < 0.05). Also, better performance in cognitive processing speed and attention (SDMT) and mental state (MMSE) were related to higher blood iron (r = 0.44; p < 0.03) and zinc concentrations (r = 0.41; p < 0.05), respectively. The other metallic nanoparticles (aluminum, chromium, copper, magnesium, and nickel) did not show a significant relationship with the cognitive parameters (p > 0.05). Linear regression estimated a significant association between blood iron concentration and SDMT performance. In conclusion, blood nanoparticles are related to cognitive performance in pwMS. Our findings suggest that the blood concentration of metallic nanoparticles, particularly the iron concentration, is a promising biomarker for monitoring cognitive impairment in pwMS. MDPI 2023-06-25 /pmc/articles/PMC10376844/ /pubmed/37509462 http://dx.doi.org/10.3390/biomedicines11071819 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article de Oliveira, Marcela Santinelli, Felipe Balistieri Lisboa-Filho, Paulo Noronha Barbieri, Fabio Augusto The Blood Concentration of Metallic Nanoparticles Is Related to Cognitive Performance in People with Multiple Sclerosis: An Exploratory Analysis |
title | The Blood Concentration of Metallic Nanoparticles Is Related to Cognitive Performance in People with Multiple Sclerosis: An Exploratory Analysis |
title_full | The Blood Concentration of Metallic Nanoparticles Is Related to Cognitive Performance in People with Multiple Sclerosis: An Exploratory Analysis |
title_fullStr | The Blood Concentration of Metallic Nanoparticles Is Related to Cognitive Performance in People with Multiple Sclerosis: An Exploratory Analysis |
title_full_unstemmed | The Blood Concentration of Metallic Nanoparticles Is Related to Cognitive Performance in People with Multiple Sclerosis: An Exploratory Analysis |
title_short | The Blood Concentration of Metallic Nanoparticles Is Related to Cognitive Performance in People with Multiple Sclerosis: An Exploratory Analysis |
title_sort | blood concentration of metallic nanoparticles is related to cognitive performance in people with multiple sclerosis: an exploratory analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376844/ https://www.ncbi.nlm.nih.gov/pubmed/37509462 http://dx.doi.org/10.3390/biomedicines11071819 |
work_keys_str_mv | AT deoliveiramarcela thebloodconcentrationofmetallicnanoparticlesisrelatedtocognitiveperformanceinpeoplewithmultiplesclerosisanexploratoryanalysis AT santinellifelipebalistieri thebloodconcentrationofmetallicnanoparticlesisrelatedtocognitiveperformanceinpeoplewithmultiplesclerosisanexploratoryanalysis AT lisboafilhopaulonoronha thebloodconcentrationofmetallicnanoparticlesisrelatedtocognitiveperformanceinpeoplewithmultiplesclerosisanexploratoryanalysis AT barbierifabioaugusto thebloodconcentrationofmetallicnanoparticlesisrelatedtocognitiveperformanceinpeoplewithmultiplesclerosisanexploratoryanalysis AT deoliveiramarcela bloodconcentrationofmetallicnanoparticlesisrelatedtocognitiveperformanceinpeoplewithmultiplesclerosisanexploratoryanalysis AT santinellifelipebalistieri bloodconcentrationofmetallicnanoparticlesisrelatedtocognitiveperformanceinpeoplewithmultiplesclerosisanexploratoryanalysis AT lisboafilhopaulonoronha bloodconcentrationofmetallicnanoparticlesisrelatedtocognitiveperformanceinpeoplewithmultiplesclerosisanexploratoryanalysis AT barbierifabioaugusto bloodconcentrationofmetallicnanoparticlesisrelatedtocognitiveperformanceinpeoplewithmultiplesclerosisanexploratoryanalysis |