Cargando…
GIT-Net: An Ensemble Deep Learning-Based GI Tract Classification of Endoscopic Images
This paper presents an ensemble of pre-trained models for the accurate classification of endoscopic images associated with Gastrointestinal (GI) diseases and illnesses. In this paper, we propose a weighted average ensemble model called GIT-NET to classify GI-tract diseases. We evaluated the model on...
Autores principales: | Gunasekaran, Hemalatha, Ramalakshmi, Krishnamoorthi, Swaminathan, Deepa Kanmani, J, Andrew, Mazzara, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376874/ https://www.ncbi.nlm.nih.gov/pubmed/37508836 http://dx.doi.org/10.3390/bioengineering10070809 |
Ejemplares similares
-
Analysis of DNA Sequence Classification Using CNN and Hybrid Models
por: Gunasekaran, Hemalatha, et al.
Publicado: (2021) -
The impact of asthma on the gastrointestinal tract (GIT)
por: Vieira, Warren Antonio, et al.
Publicado: (2010) -
Effect of image transformation on EfficientNet model for COVID-19 CT image classification
por: Shamila Ebenezer, A., et al.
Publicado: (2022) -
Gastrointestinal tract disorders classification using ensemble of InceptionNet and proposed GITNet based deep feature with ant colony optimization
por: Ramzan, Muhammad, et al.
Publicado: (2023) -
Version control with Git and GitHub
por: Magana, Alex, et al.
Publicado: (2018)