Cargando…
Amortization Transformer for Brain Effective Connectivity Estimation from fMRI Data
Using machine learning methods to estimate brain effective connectivity networks from functional magnetic resonance imaging (fMRI) data has garnered significant attention in the fields of neuroinformatics and bioinformatics. However, existing methods usually require retraining the model for each sub...
Autores principales: | Zhang, Zuozhen, Zhang, Ziqi, Ji, Junzhong, Liu, Jinduo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376969/ https://www.ncbi.nlm.nih.gov/pubmed/37508927 http://dx.doi.org/10.3390/brainsci13070995 |
Ejemplares similares
-
Learning Effective Connectivity Network Structure from fMRI Data Based on Artificial Immune Algorithm
por: Ji, Junzhong, et al.
Publicado: (2016) -
ACOEC-FD: Ant Colony Optimization for Learning Brain Effective Connectivity Networks From Functional MRI and Diffusion Tensor Imaging
por: Ji, Junzhong, et al.
Publicado: (2019) -
Exponential Automatic Amortized Resource Analysis
por: Kahn, David M., et al.
Publicado: (2020) -
Prediction of Brain Connectivity Map in Resting-State fMRI Data Using Shrinkage Estimator
por: Nazari, Atiye, et al.
Publicado: (2019) -
Data and model considerations for estimating time-varying functional connectivity in fMRI
por: Ahrends, C, et al.
Publicado: (2022)