Cargando…

Targeted Disruption of the MORG1 Gene in Mice Causes Embryonic Resorption in Early Phase of Development

The mitogen-activated protein kinase organizer 1 (MORG1) is a scaffold molecule for the ERK signaling pathway, but also binds to prolyl-hydroxylase 3 and modulates HIFα expression. To obtain further insight into the role of MORG1, knockout-mice were generated by homologous recombination. While Morg1...

Descripción completa

Detalles Bibliográficos
Autores principales: Wulf, Sophie, Mizko, Luisa, Herrmann, Karl-Heinz, Sánchez-Carbonell, Marta, Urbach, Anja, Lemke, Cornelius, Berndt, Alexander, Loeffler, Ivonne, Wolf, Gunter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377003/
https://www.ncbi.nlm.nih.gov/pubmed/37509073
http://dx.doi.org/10.3390/biom13071037
Descripción
Sumario:The mitogen-activated protein kinase organizer 1 (MORG1) is a scaffold molecule for the ERK signaling pathway, but also binds to prolyl-hydroxylase 3 and modulates HIFα expression. To obtain further insight into the role of MORG1, knockout-mice were generated by homologous recombination. While Morg1+/− mice developed normally without any apparent phenotype, there were no live-born Morg1−/− knockout offspring, indicating embryonic lethality. The intrauterine death of Morg1−/− embryos is caused by a severe failure to develop brain and other neuronal structures such as the spinal cord and a failure of chorioallantoic fusion. On E8.5, Morg1−/− embryos showed severe underdevelopment and proliferative arrest as indicated by absence of Ki67 expression, impaired placental vascularization and altered phenotype of trophoblast giant cells. On E9.5, the malformed Morg1−/− embryos showed defective turning into the final fetal position and widespread apoptosis in many structures. In the subsequent days, apoptosis and decomposition of embryonic tissue progressed, accompanied by a massive infiltration of inflammatory cells. Developmental aberrancies were accompanied by altered expression of HIF-1/2α and VEGF-A and caspase-3 activation in embryos and extraembryonic tissues. In conclusion, the results suggest a multifactorial process that causes embryonic death in homozygous Morg1 mutant mice, described here, to the best of our knowledge, for the first time.