Cargando…
Graph Random Forest: A Graph Embedded Algorithm for Identifying Highly Connected Important Features
Random Forest (RF) is a widely used machine learning method with good performance on classification and regression tasks. It works well under low sample size situations, which benefits applications in the field of biology. For example, gene expression data often involve much larger numbers of featur...
Autores principales: | Tian, Leqi, Wu, Wenbin, Yu, Tianwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377046/ https://www.ncbi.nlm.nih.gov/pubmed/37509188 http://dx.doi.org/10.3390/biom13071153 |
Ejemplares similares
-
Algorithmic aspects of graph connectivity
por: Nagamochi, Hiroshi, et al.
Publicado: (2008) -
Embedded graphs
por: Lando, S, et al.
Publicado: (2001) -
GFCNet: Utilizing graph feature collection networks for coronavirus knowledge graph embeddings
por: Xie, Zhiwen, et al.
Publicado: (2022) -
Semi-Supervised Learning in Medical Images Through Graph-Embedded Random Forest
por: Gu, Lin, et al.
Publicado: (2020) -
Influence of Random Walk Parametrization on Graph Embeddings
por: Schliski, Fabian, et al.
Publicado: (2020)