Cargando…

Time Course of Reactive Brain Activities during a Stroop Color-Word Task: Evidence of Specific Facilitation and Interference Effects

The Stroop test represents a widely used task in basic and clinical research for approaching the cognitive system functioning in humans. However, a clear overview of the neurophysiological signatures associated with the different sub-domains of this task remains controversial. In the present study,...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Russo, Francesco, Bianco, Valentina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377081/
https://www.ncbi.nlm.nih.gov/pubmed/37508914
http://dx.doi.org/10.3390/brainsci13070982
Descripción
Sumario:The Stroop test represents a widely used task in basic and clinical research for approaching the cognitive system functioning in humans. However, a clear overview of the neurophysiological signatures associated with the different sub-domains of this task remains controversial. In the present study, we leveraged the EEG technique to explore the modulation of specific post-stimulus ERPs components during the Stroop test. Critically, to better disentangle the contribution of facilitation (i.e., faster color identification times for color-congruent Stroop words) and interference (i.e., longer color identification times for color-incongruent Stroop words) processes prompted by the Stroop test, we delivered congruent and incongruent trials in two separate experimental blocks, each including the respective neutral condition. Thanks to this methodological manipulation, we were able to clearly dissociate the two sub-processes. Electrophysiological results suggest specific markers of brain activity for the facilitation and the interference effects. Indeed, distinctive Stroop-related ERPs (i.e., the P3, the N450, and the LPC) were differently modulated in the two sub-processes. Collectively, we provide evidence of selected brain activities involved in the reactive stage of processing associated with the Stroop effect.