Cargando…
Predicting Drug–Gene–Disease Associations by Tensor Decomposition for Network-Based Computational Drug Repositioning
Drug repositioning offers the significant advantage of greatly reducing the cost and time of drug discovery by identifying new therapeutic indications for existing drugs. In particular, computational approaches using networks in drug repositioning have attracted attention for inferring potential ass...
Autores principales: | Kim, Yoonbee, Cho, Young-Rae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377142/ https://www.ncbi.nlm.nih.gov/pubmed/37509637 http://dx.doi.org/10.3390/biomedicines11071998 |
Ejemplares similares
-
Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning
por: Kim, Yoonbee, et al.
Publicado: (2022) -
Predicting associations among drugs, targets and diseases by tensor decomposition for drug repositioning
por: Wang, Ran, et al.
Publicado: (2019) -
NTD-DR: Nonnegative tensor decomposition for drug repositioning
por: Jamali, Ali Akbar, et al.
Publicado: (2022) -
Network-Based Approaches for Disease-Gene Association Prediction Using Protein-Protein Interaction Networks
por: Kim, Yoonbee, et al.
Publicado: (2022) -
A Proteotranscriptomic-Based Computational Drug-Repositioning Method for Alzheimer’s Disease
por: Lee, Soo Youn, et al.
Publicado: (2020)