Cargando…
Using Explainable Artificial Intelligence to Predict Potentially Preventable Hospitalizations: A Population-Based Cohort Study in Denmark
The increasing aging population and limited health care resources have placed new demands on the healthcare sector. Reducing the number of hospitalizations has become a political priority in many countries, and special focus has been directed at potentially preventable hospitalizations. OBJECTIVES:...
Autores principales: | Riis, Anders Hammerich, Kristensen, Pia Kjær, Lauritsen, Simon Meyer, Thiesson, Bo, Jørgensen, Marianne Johansson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377250/ https://www.ncbi.nlm.nih.gov/pubmed/36893408 http://dx.doi.org/10.1097/MLR.0000000000001830 |
Ejemplares similares
-
Cohort profile: CROSS-TRACKS: a population-based open cohort across healthcare sectors in Denmark
por: Riis, Anders Hammerich, et al.
Publicado: (2020) -
Explainable artificial intelligence model to predict acute critical illness from electronic health records
por: Lauritsen, Simon Meyer, et al.
Publicado: (2020) -
The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
por: Lauritsen, Simon Meyer, et al.
Publicado: (2021) -
Interventions to Prevent Potentially Avoidable Hospitalizations: A Mixed Methods Systematic Review
por: Lyhne, Cecilie Nørby, et al.
Publicado: (2022) -
Automated artificial intelligence‐based system for clinical follow‐up of patients with age‐related macular degeneration
por: Potapenko, Ivan, et al.
Publicado: (2022)