Cargando…
Quantifying the Growth of Glioblastoma Tumors Using Multimodal MRI Brain Images
SIMPLE SUMMARY: Prediction of volume expected to be attained by a tumor of fourth grade malignancy becomes difficult when problem is subject to changes in time or when there exists heterogeneity among oncogenes for different subjects. The attempt here was to develop a time independent model which wi...
Autores principales: | Das, Anisha, Ding, Shengxian, Liu, Rongjie, Huang, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377296/ https://www.ncbi.nlm.nih.gov/pubmed/37509277 http://dx.doi.org/10.3390/cancers15143614 |
Ejemplares similares
-
Using Brain Tumor MRI Structured Reporting to Quantify the Impact of Imaging on Brain Tumor Boards
por: Abidi, Syed A., et al.
Publicado: (2023) -
Multimodal MRI Brain Tumor Image Segmentation Using Sparse Subspace Clustering Algorithm
por: Liu, Li, et al.
Publicado: (2020) -
Multimodal imaging of the dynamic brain tumor microenvironment during glioblastoma progression and in response to treatment
por: Zomer, Anoek, et al.
Publicado: (2022) -
MM-UNet: A multimodality brain tumor segmentation network in MRI images
por: Zhao, Liang, et al.
Publicado: (2022) -
Multimodal MRI characteristics of the glioblastoma infiltration beyond contrast enhancement
por: Yan, Jiun-Lin, et al.
Publicado: (2019)