Cargando…
Classification of Alzheimer’s Disease Using Maximal Information Coefficient-Based Functional Connectivity with an Extreme Learning Machine
Alzheimer’s disease (AD) is a progressive chronic illness that leads to cognitive decline and dementia. Neuroimaging technologies, such as functional magnetic resonance imaging (fMRI), and deep learning approaches offer promising avenues for AD classification. In this study, we investigate the use o...
Autores principales: | Chauhan, Nishant, Choi, Byung-Jae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377329/ https://www.ncbi.nlm.nih.gov/pubmed/37508978 http://dx.doi.org/10.3390/brainsci13071046 |
Ejemplares similares
-
Classification of Alzheimer’s Disease Based on Abnormal Hippocampal Functional Connectivity and Machine Learning
por: Zhu, Qixiao, et al.
Publicado: (2022) -
RapidMic: Rapid Computation of the Maximal Information Coefficient
por: Tang, Dongming, et al.
Publicado: (2014) -
A New Algorithm to Optimize Maximal Information Coefficient
por: Chen, Yuan, et al.
Publicado: (2016) -
A practical tool for maximal information coefficient analysis
por: Albanese, Davide, et al.
Publicado: (2018) -
An improved algorithm for the maximal information coefficient and its application
por: Cao, Dan, et al.
Publicado: (2021)