Cargando…

Molecular Subtypes and Tumor Microenvironment Characteristics of Small-Cell Lung Cancer Associated with Platinum-Resistance

SIMPLE SUMMARY: Although molecular subtypes of small-cell lung cancer (SCLC) have been proposed, their therapeutic implications remain unclear. We dissected SCLC subtypes to delineate the tumor microenvironment (TME) implicated in platinum-drug resistance: ASCL1+ (SCLC-A) subtype of the neuroendocri...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jihyun, Kim, Sunshin, Park, Seog-Yun, Lee, Geon Kook, Lim, Kun Young, Kim, Jin Young, Hwang, Jung-Ah, Yu, Namhee, Kang, Eun Hye, Hwang, Mihwa, Song, Bo Ram, Park, Charny, Han, Ji-Youn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377352/
https://www.ncbi.nlm.nih.gov/pubmed/37509231
http://dx.doi.org/10.3390/cancers15143568
Descripción
Sumario:SIMPLE SUMMARY: Although molecular subtypes of small-cell lung cancer (SCLC) have been proposed, their therapeutic implications remain unclear. We dissected SCLC subtypes to delineate the tumor microenvironment (TME) implicated in platinum-drug resistance: ASCL1+ (SCLC-A) subtype of the neuroendocrine type resembled RB1/TP53-mutant non-SCLC; inflammatory (SCLC-I) subtype presented CD8+/PD-L1+ T-cell infiltration and endothelial-to-mesenchymal transition (EndMT); NEUROD1 (SCLC-N) subtype showed neurotransmission process activation; and POU2F3+ (SCLC-P) subtype showed upregulated epithelial-to-mesenchymal transition (EMT). Meanwhile, the EndMT population was abundant in platinum-resistant SCLC. To overcome platinum resistance, we interrogated drug candidates through high-throughput screening. Cell cycle inhibitors were no longer susceptible to platinum resistance, as opposed to SCLC-A/N. The bromodomain and extra-terminal (BET) inhibitor JQ1 exhibited sensitivity to EndMT promoted by platinum resistance. BET inhibitors are therefore novel therapeutic candidates for overcoming platinum resistance. ABSTRACT: Although molecular subtypes of small-cell lung cancer (SCLC) have been proposed, their clinical relevance and therapeutic implications are not fully understood. Thus, we aimed to refine molecular subtypes and to uncover therapeutic targets. We classified the subtypes based on gene expression (n = 81) and validated them in our samples (n = 87). Non-SCLC samples were compared with SCLC subtypes to identify the early development stage of SCLC. Single-cell transcriptome analysis was applied to dissect the TME of bulk samples. Finally, to overcome platinum resistance, we performed drug screening of patient-derived cells and cell lines. Four subtypes were identified: the ASCL1+ (SCLC-A) subtype identified as TP53/RB-mutated non-SCLC representing the early development stage of SCLC; the immune activation (SCLC-I) subtype, showing high CD8+/PD-L1+ T-cell infiltration and endothelial-to-mesenchymal transition (EndMT); the NEUROD1 (SCLC-N) subtype, which showed neurotransmission process; and the POU2F3+ (SCLC-P) subtype with epithelial-to-mesenchymal transition (EMT). EndMT was associated with the worst prognosis. While SCLC-A/N exhibited platinum sensitivity, the EndMT signal of SCLC-I conferred platinum resistance. A BET inhibitor suppressed the aggressive angiogenesis phenotype of SCLC-I. We revealed that EndMT development contributed to a poor outcome in SCLC-I. Moreover, heterogenous TME development facilitated platinum resistance. BET inhibitors are novel candidates for overcoming platinum resistance.