Cargando…
Pareto-Optimized Non-Negative Matrix Factorization Approach to the Cleaning of Alaryngeal Speech Signals
SIMPLE SUMMARY: This paper introduces a new method for cleaning impaired speech by combining Pareto-optimized deep learning with Non-negative Matrix Factorization (NMF). The approach effectively reduces noise in impaired speech while preserving the desired speech quality. The method involves calcula...
Autores principales: | Maskeliūnas, Rytis, Damaševičius, Robertas, Kulikajevas, Audrius, Pribuišis, Kipras, Ulozaitė-Stanienė, Nora, Uloza, Virgilijus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377391/ https://www.ncbi.nlm.nih.gov/pubmed/37509305 http://dx.doi.org/10.3390/cancers15143644 |
Ejemplares similares
-
Lightweight Deep Learning Model for Assessment of Substitution Voicing and Speech after Laryngeal Carcinoma Surgery
por: Maskeliūnas, Rytis, et al.
Publicado: (2022) -
Reliability of Universal-Platform-Based Voice Screen Application in AVQI Measurements Captured with Different Smartphones
por: Uloza, Virgilijus, et al.
Publicado: (2023) -
Detection of sitting posture using hierarchical image composition and deep learning
por: Kulikajevas, Audrius, et al.
Publicado: (2021) -
Reconstruction of 3D Object Shape Using Hybrid Modular Neural Network Architecture Trained on 3D Models from ShapeNetCore Dataset
por: Kulikajevas, Audrius, et al.
Publicado: (2019) -
HUMANNET—A Two-Tiered Deep Neural Network Architecture for Self-Occluding Humanoid Pose Reconstruction
por: Kulikajevas, Audrius, et al.
Publicado: (2021)