Cargando…

Identifying Patients with Polycythemia Vera at Risk of Thrombosis after Hydroxyurea Initiation: The Polycythemia Vera—Advanced Integrated Models (PV-AIM) Project

Patients with polycythemia vera (PV) are at significant risk of thromboembolic events (TE). The PV-AIM study used the Optum(®) de-identified Electronic Health Record dataset and machine learning to identify markers of TE in a real-world population. Data for 82,960 patients with PV were extracted: 38...

Descripción completa

Detalles Bibliográficos
Autores principales: Verstovsek, Srdan, Krečak, Ivan, Heidel, Florian H., De Stefano, Valerio, Bryan, Kenneth, Zuurman, Mike W., Zaiac, Michael, Morelli, Mara, Smyth, Aoife, Redondo, Santiago, Bigan, Erwan, Ruhl, Michael, Meier, Christoph, Beffy, Magali, Kiladjian, Jean-Jacques
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377437/
https://www.ncbi.nlm.nih.gov/pubmed/37509564
http://dx.doi.org/10.3390/biomedicines11071925
_version_ 1785079517603168256
author Verstovsek, Srdan
Krečak, Ivan
Heidel, Florian H.
De Stefano, Valerio
Bryan, Kenneth
Zuurman, Mike W.
Zaiac, Michael
Morelli, Mara
Smyth, Aoife
Redondo, Santiago
Bigan, Erwan
Ruhl, Michael
Meier, Christoph
Beffy, Magali
Kiladjian, Jean-Jacques
author_facet Verstovsek, Srdan
Krečak, Ivan
Heidel, Florian H.
De Stefano, Valerio
Bryan, Kenneth
Zuurman, Mike W.
Zaiac, Michael
Morelli, Mara
Smyth, Aoife
Redondo, Santiago
Bigan, Erwan
Ruhl, Michael
Meier, Christoph
Beffy, Magali
Kiladjian, Jean-Jacques
author_sort Verstovsek, Srdan
collection PubMed
description Patients with polycythemia vera (PV) are at significant risk of thromboembolic events (TE). The PV-AIM study used the Optum(®) de-identified Electronic Health Record dataset and machine learning to identify markers of TE in a real-world population. Data for 82,960 patients with PV were extracted: 3852 patients were treated with hydroxyurea (HU) only, while 130 patients were treated with HU and then changed to ruxolitinib (HU-ruxolitinib). For HU-alone patients, the annualized incidence rates (IR; per 100 patients) decreased from 8.7 (before HU) to 5.6 (during HU) but increased markedly to 10.5 (continuing HU). Whereas for HU-ruxolitinib patients, the IR decreased from 10.8 (before HU) to 8.4 (during HU) and was maintained at 8.3 (after switching to ruxolitinib). To better understand markers associated with TE risk, we built a machine-learning model for HU-alone patients and validated it using an independent dataset. The model identified lymphocyte percentage (LYP), neutrophil percentage (NEP), and red cell distribution width (RDW) as key markers of TE risk, and optimal thresholds for these markers were established, from which a decision tree was derived. Using these widely used laboratory markers, the decision tree could be used to identify patients at high risk for TE, facilitate treatment decisions, and optimize patient management.
format Online
Article
Text
id pubmed-10377437
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103774372023-07-29 Identifying Patients with Polycythemia Vera at Risk of Thrombosis after Hydroxyurea Initiation: The Polycythemia Vera—Advanced Integrated Models (PV-AIM) Project Verstovsek, Srdan Krečak, Ivan Heidel, Florian H. De Stefano, Valerio Bryan, Kenneth Zuurman, Mike W. Zaiac, Michael Morelli, Mara Smyth, Aoife Redondo, Santiago Bigan, Erwan Ruhl, Michael Meier, Christoph Beffy, Magali Kiladjian, Jean-Jacques Biomedicines Article Patients with polycythemia vera (PV) are at significant risk of thromboembolic events (TE). The PV-AIM study used the Optum(®) de-identified Electronic Health Record dataset and machine learning to identify markers of TE in a real-world population. Data for 82,960 patients with PV were extracted: 3852 patients were treated with hydroxyurea (HU) only, while 130 patients were treated with HU and then changed to ruxolitinib (HU-ruxolitinib). For HU-alone patients, the annualized incidence rates (IR; per 100 patients) decreased from 8.7 (before HU) to 5.6 (during HU) but increased markedly to 10.5 (continuing HU). Whereas for HU-ruxolitinib patients, the IR decreased from 10.8 (before HU) to 8.4 (during HU) and was maintained at 8.3 (after switching to ruxolitinib). To better understand markers associated with TE risk, we built a machine-learning model for HU-alone patients and validated it using an independent dataset. The model identified lymphocyte percentage (LYP), neutrophil percentage (NEP), and red cell distribution width (RDW) as key markers of TE risk, and optimal thresholds for these markers were established, from which a decision tree was derived. Using these widely used laboratory markers, the decision tree could be used to identify patients at high risk for TE, facilitate treatment decisions, and optimize patient management. MDPI 2023-07-07 /pmc/articles/PMC10377437/ /pubmed/37509564 http://dx.doi.org/10.3390/biomedicines11071925 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Verstovsek, Srdan
Krečak, Ivan
Heidel, Florian H.
De Stefano, Valerio
Bryan, Kenneth
Zuurman, Mike W.
Zaiac, Michael
Morelli, Mara
Smyth, Aoife
Redondo, Santiago
Bigan, Erwan
Ruhl, Michael
Meier, Christoph
Beffy, Magali
Kiladjian, Jean-Jacques
Identifying Patients with Polycythemia Vera at Risk of Thrombosis after Hydroxyurea Initiation: The Polycythemia Vera—Advanced Integrated Models (PV-AIM) Project
title Identifying Patients with Polycythemia Vera at Risk of Thrombosis after Hydroxyurea Initiation: The Polycythemia Vera—Advanced Integrated Models (PV-AIM) Project
title_full Identifying Patients with Polycythemia Vera at Risk of Thrombosis after Hydroxyurea Initiation: The Polycythemia Vera—Advanced Integrated Models (PV-AIM) Project
title_fullStr Identifying Patients with Polycythemia Vera at Risk of Thrombosis after Hydroxyurea Initiation: The Polycythemia Vera—Advanced Integrated Models (PV-AIM) Project
title_full_unstemmed Identifying Patients with Polycythemia Vera at Risk of Thrombosis after Hydroxyurea Initiation: The Polycythemia Vera—Advanced Integrated Models (PV-AIM) Project
title_short Identifying Patients with Polycythemia Vera at Risk of Thrombosis after Hydroxyurea Initiation: The Polycythemia Vera—Advanced Integrated Models (PV-AIM) Project
title_sort identifying patients with polycythemia vera at risk of thrombosis after hydroxyurea initiation: the polycythemia vera—advanced integrated models (pv-aim) project
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377437/
https://www.ncbi.nlm.nih.gov/pubmed/37509564
http://dx.doi.org/10.3390/biomedicines11071925
work_keys_str_mv AT verstovseksrdan identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT krecakivan identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT heidelflorianh identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT destefanovalerio identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT bryankenneth identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT zuurmanmikew identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT zaiacmichael identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT morellimara identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT smythaoife identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT redondosantiago identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT biganerwan identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT ruhlmichael identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT meierchristoph identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT beffymagali identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject
AT kiladjianjeanjacques identifyingpatientswithpolycythemiaveraatriskofthrombosisafterhydroxyureainitiationthepolycythemiaveraadvancedintegratedmodelspvaimproject