Cargando…

Cobalt–Nitrogen Co-Doped Carbon as Highly Efficient Oxidase Mimics for Colorimetric Assay of Nitrite

Transition metal-N-doped carbon has been demonstrated to mimic natural enzyme activity; in this study, cobalt–nitrogen co-doped carbon (Co-N-C) nanomaterial was developed, and it could be an oxidase mimic. Firstly, Co-N-C with oxidase-like activity boosts the chromogenic reaction of 3,3′,5,5′-tetram...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Dalei, Wu, Shuzhi, Chu, Shushu, Lu, Yizhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377546/
https://www.ncbi.nlm.nih.gov/pubmed/37504147
http://dx.doi.org/10.3390/bios13070748
Descripción
Sumario:Transition metal-N-doped carbon has been demonstrated to mimic natural enzyme activity; in this study, cobalt–nitrogen co-doped carbon (Co-N-C) nanomaterial was developed, and it could be an oxidase mimic. Firstly, Co-N-C with oxidase-like activity boosts the chromogenic reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) to produce the oxidized TMB (oxTMB). And the aromatic primary amino group of oxTMB reacts with nitrite (NO(2)(−)) to form diazo groups. Based on this background, we developed a cascade system of a Co-N-C-catalyzed oxidation reaction and a diazotization reaction for nitrite determination. The low detection limit (0.039 μM) indicates that Co-N-C is superior compared with the vast majority of previously reported nitrite assays. This study not only provides a novel nanozyme with sufficiently dispersed active sites, but it also further applies it to the determination of nitrite, which is expected to expand the application of nanozymes in colorimetric analysis.