Cargando…
Within-Modality Synthesis and Novel Radiomic Evaluation of Brain MRI Scans
SIMPLE SUMMARY: Brain MRI scans often require different imaging sequences based on tissue types, posing a common challenge. In our research, we propose a method that utilizes Generative Adversarial Networks (GAN) to translate T2-weighted-Fluid-attenuated-Inversion-Recovery (FLAIR) MRI volumes into T...
Autores principales: | Rezaeijo, Seyed Masoud, Chegeni, Nahid, Baghaei Naeini, Fariborz, Makris, Dimitrios, Bakas, Spyridon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377568/ https://www.ncbi.nlm.nih.gov/pubmed/37509228 http://dx.doi.org/10.3390/cancers15143565 |
Ejemplares similares
-
A Novel Event-Based Incipient Slip Detection Using Dynamic Active-Pixel Vision Sensor (DAVIS)
por: Rigi, Amin, et al.
Publicado: (2018) -
Dynamic-Vision-Based Force Measurements Using Convolutional Recurrent Neural Networks
por: Baghaei Naeini, Fariborz, et al.
Publicado: (2020) -
Exploring the efficacy of multi-flavored feature extraction with radiomics and deep features for prostate cancer grading on mpMRI
por: Khanfari, Hasan, et al.
Publicado: (2023) -
Deep versus Handcrafted Tensor Radiomics Features: Prediction of Survival in Head and Neck Cancer Using Machine Learning and Fusion Techniques
por: Salmanpour, Mohammad R., et al.
Publicado: (2023) -
Enhancing the REMBRANDT MRI collection with expert segmentation labels and quantitative radiomic features
por: Sayah, Anousheh, et al.
Publicado: (2022)