Cargando…
Building Predictive Models for Schizophrenia Diagnosis with Peripheral Inflammatory Biomarkers
Machine learning and artificial intelligence technologies are known to be a convenient tool for analyzing multi-domain data in precision psychiatry. In the case of schizophrenia, the most commonly used data sources for such purposes are neuroimaging, voice and language patterns, and mobile phone dat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377576/ https://www.ncbi.nlm.nih.gov/pubmed/37509629 http://dx.doi.org/10.3390/biomedicines11071990 |
_version_ | 1785079551728025600 |
---|---|
author | Kozyrev, Evgeny A. Ermakov, Evgeny A. Boiko, Anastasiia S. Mednova, Irina A. Kornetova, Elena G. Bokhan, Nikolay A. Ivanova, Svetlana A. |
author_facet | Kozyrev, Evgeny A. Ermakov, Evgeny A. Boiko, Anastasiia S. Mednova, Irina A. Kornetova, Elena G. Bokhan, Nikolay A. Ivanova, Svetlana A. |
author_sort | Kozyrev, Evgeny A. |
collection | PubMed |
description | Machine learning and artificial intelligence technologies are known to be a convenient tool for analyzing multi-domain data in precision psychiatry. In the case of schizophrenia, the most commonly used data sources for such purposes are neuroimaging, voice and language patterns, and mobile phone data. Data on peripheral markers can also be useful for building predictive models. Here, we have developed five predictive models for the binary classification of schizophrenia patients and healthy individuals. Data on serum concentrations of cytokines, chemokines, growth factors, and age were among 38 parameters used to build these models. The sample consisted of 217 schizophrenia patients and 90 healthy individuals. The models architecture was involved logistic regression, deep neural networks, decision trees, support vector machine, and k-nearest neighbors algorithms. It was shown that the algorithm based on a deep neural network (consisting of five layers) showed a slightly higher sensitivity (0.87 ± 0.04) and specificity (0.52 ± 0.06) than other algorithms. Combining all variables into a single classifier showed a cumulative effect that exceeded the effectiveness of individual variables, indicating the need to use multiple biomarkers to diagnose schizophrenia. Thus, the data obtained showed the promise of using data on peripheral biomarkers and machine learning methods for diagnosing schizophrenia. |
format | Online Article Text |
id | pubmed-10377576 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103775762023-07-29 Building Predictive Models for Schizophrenia Diagnosis with Peripheral Inflammatory Biomarkers Kozyrev, Evgeny A. Ermakov, Evgeny A. Boiko, Anastasiia S. Mednova, Irina A. Kornetova, Elena G. Bokhan, Nikolay A. Ivanova, Svetlana A. Biomedicines Article Machine learning and artificial intelligence technologies are known to be a convenient tool for analyzing multi-domain data in precision psychiatry. In the case of schizophrenia, the most commonly used data sources for such purposes are neuroimaging, voice and language patterns, and mobile phone data. Data on peripheral markers can also be useful for building predictive models. Here, we have developed five predictive models for the binary classification of schizophrenia patients and healthy individuals. Data on serum concentrations of cytokines, chemokines, growth factors, and age were among 38 parameters used to build these models. The sample consisted of 217 schizophrenia patients and 90 healthy individuals. The models architecture was involved logistic regression, deep neural networks, decision trees, support vector machine, and k-nearest neighbors algorithms. It was shown that the algorithm based on a deep neural network (consisting of five layers) showed a slightly higher sensitivity (0.87 ± 0.04) and specificity (0.52 ± 0.06) than other algorithms. Combining all variables into a single classifier showed a cumulative effect that exceeded the effectiveness of individual variables, indicating the need to use multiple biomarkers to diagnose schizophrenia. Thus, the data obtained showed the promise of using data on peripheral biomarkers and machine learning methods for diagnosing schizophrenia. MDPI 2023-07-14 /pmc/articles/PMC10377576/ /pubmed/37509629 http://dx.doi.org/10.3390/biomedicines11071990 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kozyrev, Evgeny A. Ermakov, Evgeny A. Boiko, Anastasiia S. Mednova, Irina A. Kornetova, Elena G. Bokhan, Nikolay A. Ivanova, Svetlana A. Building Predictive Models for Schizophrenia Diagnosis with Peripheral Inflammatory Biomarkers |
title | Building Predictive Models for Schizophrenia Diagnosis with Peripheral Inflammatory Biomarkers |
title_full | Building Predictive Models for Schizophrenia Diagnosis with Peripheral Inflammatory Biomarkers |
title_fullStr | Building Predictive Models for Schizophrenia Diagnosis with Peripheral Inflammatory Biomarkers |
title_full_unstemmed | Building Predictive Models for Schizophrenia Diagnosis with Peripheral Inflammatory Biomarkers |
title_short | Building Predictive Models for Schizophrenia Diagnosis with Peripheral Inflammatory Biomarkers |
title_sort | building predictive models for schizophrenia diagnosis with peripheral inflammatory biomarkers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377576/ https://www.ncbi.nlm.nih.gov/pubmed/37509629 http://dx.doi.org/10.3390/biomedicines11071990 |
work_keys_str_mv | AT kozyrevevgenya buildingpredictivemodelsforschizophreniadiagnosiswithperipheralinflammatorybiomarkers AT ermakovevgenya buildingpredictivemodelsforschizophreniadiagnosiswithperipheralinflammatorybiomarkers AT boikoanastasiias buildingpredictivemodelsforschizophreniadiagnosiswithperipheralinflammatorybiomarkers AT mednovairinaa buildingpredictivemodelsforschizophreniadiagnosiswithperipheralinflammatorybiomarkers AT kornetovaelenag buildingpredictivemodelsforschizophreniadiagnosiswithperipheralinflammatorybiomarkers AT bokhannikolaya buildingpredictivemodelsforschizophreniadiagnosiswithperipheralinflammatorybiomarkers AT ivanovasvetlanaa buildingpredictivemodelsforschizophreniadiagnosiswithperipheralinflammatorybiomarkers |