Cargando…

Transcranial Magnetic Stimulation as a Tool to Promote Smoking Cessation and Decrease Drug and Alcohol Use

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive, drug-free, neural-circuit-based therapeutic tool that was recently cleared by the United States Food and Drug Associate for the treatment of smoking cessation. TMS has been investigated as a tool to reduce consumption and craving...

Descripción completa

Detalles Bibliográficos
Autores principales: Harmelech, Tal, Hanlon, Colleen A., Tendler, Aron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377606/
https://www.ncbi.nlm.nih.gov/pubmed/37509004
http://dx.doi.org/10.3390/brainsci13071072
Descripción
Sumario:Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive, drug-free, neural-circuit-based therapeutic tool that was recently cleared by the United States Food and Drug Associate for the treatment of smoking cessation. TMS has been investigated as a tool to reduce consumption and craving for many other substance use disorders (SUDs). This review starts with a discussion of neural networks involved in the addiction process. It then provides a framework for the therapeutic efficacy of TMS describing the role of executive control circuits, default mode, and salience circuits as putative targets for neuromodulation (via targeting the DLPFC, MPFC, cingulate, and insula bilaterally). A series of the largest studies of TMS in SUDs are listed and discussed in the context of this framework. Our review concludes with an assessment of the current state of knowledge regarding the use of rTMS as a therapeutic tool in reducing drug, alcohol, and nicotine use and identifies gaps in the literature that need to be addressed in future studies. Namely, while the presumed mechanism through which TMS exerts its effects is by modulating the functional connectivity circuits involved in executive control and salience of drug-related cues, it is also possible that TMS has direct effects on subcortical dopamine, a hypothesis that could be explored in greater detail with PET imaging.