Cargando…
Subject-Independent EEG Classification of Motor Imagery Based on Dual-Branch Feature Fusion
A brain computer interface (BCI) system helps people with motor dysfunction interact with the external environment. With the advancement of technology, BCI systems have been applied in practice, but their practicability and usability are still greatly challenged. A large amount of calibration time i...
Autores principales: | Dong, Yanqing, Wen, Xin, Gao, Fang, Gao, Chengxin, Cao, Ruochen, Xiang, Jie, Cao, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377689/ https://www.ncbi.nlm.nih.gov/pubmed/37509039 http://dx.doi.org/10.3390/brainsci13071109 |
Ejemplares similares
-
A Two-Branch CNN Fusing Temporal and Frequency Features for Motor Imagery EEG Decoding
por: Yang, Jun, et al.
Publicado: (2022) -
Enhancing Cross-Subject Motor Imagery Classification in EEG-Based Brain–Computer Interfaces by Using Multi-Branch CNN
por: Chowdhury, Radia Rayan, et al.
Publicado: (2023) -
A Parallel Feature Fusion Network Combining GRU and CNN for Motor Imagery EEG Decoding
por: Gao, Siheng, et al.
Publicado: (2022) -
EEG feature comparison and classification of simple and compound limb motor imagery
por: Yi, Weibo, et al.
Publicado: (2013) -
Early-stage fusion of EEG and fNIRS improves classification of motor imagery
por: Li, Yang, et al.
Publicado: (2023)