Cargando…

A Novel Intraoperative Mapping Device Detects the Thermodynamic Response Function

Functional activation leads to an increase in local brain temperature via an increase in local perfusion. In the intraoperative setting, these cortical surface temperature fluctuations may be imaged using infrared thermography such that the activated brain areas are inferred. While it is known that...

Descripción completa

Detalles Bibliográficos
Autores principales: Iorga, Michael, Schneider, Nils, Cho, Jaden, Tate, Matthew C., Parrish, Todd B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377735/
https://www.ncbi.nlm.nih.gov/pubmed/37509021
http://dx.doi.org/10.3390/brainsci13071091
Descripción
Sumario:Functional activation leads to an increase in local brain temperature via an increase in local perfusion. In the intraoperative setting, these cortical surface temperature fluctuations may be imaged using infrared thermography such that the activated brain areas are inferred. While it is known that temperature increases as a result of activation, a quantitative spatiotemporal description has yet to be achieved. A novel intraoperative infrared thermography device with data collection software was developed to isolate the thermal impulse response function. Device performance was validated using data from six patients undergoing awake craniotomy who participated in motor and sensory mapping tasks during infrared imaging following standard mapping with direct electrical stimulation. Shared spatiotemporal patterns of cortical temperature changes across patients were identified using group principal component analysis. Analysis of component time series revealed a thermal activation peak present across all patients with an onset delay of five seconds and a peak duration of ten seconds. Spatial loadings were converted to a functional map which showed strong correspondence to positive stimulation results for similar tasks. This component demonstrates the presence of a previously unknown impulse response function for functional mapping with infrared thermography.