Cargando…

Comparative Evaluation of Breast Ductal Carcinoma Grading: A Deep-Learning Model and General Pathologists’ Assessment Approach

Breast cancer is the most prevalent neoplasia among women, with early and accurate diagnosis critical for effective treatment. In clinical practice, however, the subjective nature of histological grading of infiltrating ductal adenocarcinoma of the breast (DAC-NOS) often leads to inconsistencies amo...

Descripción completa

Detalles Bibliográficos
Autores principales: Köteles, Maria Magdalena, Vigdorovits, Alon, Kumar, Darshan, Mihai, Ioana-Maria, Jurescu, Aura, Gheju, Adelina, Bucur, Adeline, Harich, Octavia Oana, Olteanu, Gheorghe-Emilian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377791/
https://www.ncbi.nlm.nih.gov/pubmed/37510069
http://dx.doi.org/10.3390/diagnostics13142326
Descripción
Sumario:Breast cancer is the most prevalent neoplasia among women, with early and accurate diagnosis critical for effective treatment. In clinical practice, however, the subjective nature of histological grading of infiltrating ductal adenocarcinoma of the breast (DAC-NOS) often leads to inconsistencies among pathologists, posing a significant challenge to achieving optimal patient outcomes. Our study aimed to address this reproducibility problem by leveraging artificial intelligence (AI). We trained a deep-learning model using a convolutional neural network-based algorithm (CNN-bA) on 100 whole slide images (WSIs) of DAC-NOS from the Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset. Our model demonstrated high precision, sensitivity, and F1 score across different grading components in about 17.5 h with 19,000 iterations. However, the agreement between the model’s grading and that of general pathologists varied, showing the highest agreement for the mitotic count score. These findings suggest that AI has the potential to enhance the accuracy and reproducibility of breast cancer grading, warranting further refinement and validation of this approach.