Cargando…
Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel
We study the LOCC-assisted quantum capacity of a bosonic dephasing channel with energy constraint on the input states. We start our analysis by focusing on the energy-constrained squashed entanglement of the channel, which is an upper bound for the energy-constrained LOCC-assisted quantum capacity....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377794/ https://www.ncbi.nlm.nih.gov/pubmed/37509948 http://dx.doi.org/10.3390/e25071001 |
_version_ | 1785079605413019648 |
---|---|
author | Arqand, Amir Memarzadeh, Laleh Mancini, Stefano |
author_facet | Arqand, Amir Memarzadeh, Laleh Mancini, Stefano |
author_sort | Arqand, Amir |
collection | PubMed |
description | We study the LOCC-assisted quantum capacity of a bosonic dephasing channel with energy constraint on the input states. We start our analysis by focusing on the energy-constrained squashed entanglement of the channel, which is an upper bound for the energy-constrained LOCC-assisted quantum capacity. As computing energy-constrained squashed entanglement of the channel is challenging due to a double optimization (over the set of density matrices and the isometric extensions of a squashing channel), we first derive an upper bound for it, and then, we discuss how tight that bound is for the energy-constrained LOCC-assisted quantum capacity of the bosonic dephasing channel. In doling so, we prove that the optimal input state is diagonal in the Fock basis. Then, we analyze two explicit examples of squashing channels through which we derive explicit upper and lower bounds for the energy-constrained LOCC-assisted quantum capacity of the bosonic dephasing channel in terms of its quantum capacity with different noise parameters. As the difference between upper and lower bounds becomes smaller by increasing the dephasing parameter, the bounds become tighter. |
format | Online Article Text |
id | pubmed-10377794 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103777942023-07-29 Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel Arqand, Amir Memarzadeh, Laleh Mancini, Stefano Entropy (Basel) Article We study the LOCC-assisted quantum capacity of a bosonic dephasing channel with energy constraint on the input states. We start our analysis by focusing on the energy-constrained squashed entanglement of the channel, which is an upper bound for the energy-constrained LOCC-assisted quantum capacity. As computing energy-constrained squashed entanglement of the channel is challenging due to a double optimization (over the set of density matrices and the isometric extensions of a squashing channel), we first derive an upper bound for it, and then, we discuss how tight that bound is for the energy-constrained LOCC-assisted quantum capacity of the bosonic dephasing channel. In doling so, we prove that the optimal input state is diagonal in the Fock basis. Then, we analyze two explicit examples of squashing channels through which we derive explicit upper and lower bounds for the energy-constrained LOCC-assisted quantum capacity of the bosonic dephasing channel in terms of its quantum capacity with different noise parameters. As the difference between upper and lower bounds becomes smaller by increasing the dephasing parameter, the bounds become tighter. MDPI 2023-06-29 /pmc/articles/PMC10377794/ /pubmed/37509948 http://dx.doi.org/10.3390/e25071001 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Arqand, Amir Memarzadeh, Laleh Mancini, Stefano Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel |
title | Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel |
title_full | Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel |
title_fullStr | Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel |
title_full_unstemmed | Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel |
title_short | Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel |
title_sort | energy-constrained locc-assisted quantum capacity of the bosonic dephasing channel |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377794/ https://www.ncbi.nlm.nih.gov/pubmed/37509948 http://dx.doi.org/10.3390/e25071001 |
work_keys_str_mv | AT arqandamir energyconstrainedloccassistedquantumcapacityofthebosonicdephasingchannel AT memarzadehlaleh energyconstrainedloccassistedquantumcapacityofthebosonicdephasingchannel AT mancinistefano energyconstrainedloccassistedquantumcapacityofthebosonicdephasingchannel |