Cargando…

Whole Transcriptome Analysis of Intervention Effect of Sophora subprostrate Polysaccharide on Inflammation in PCV2 Infected Murine Splenic Lymphocytes

(1) Background: Sophora subprostrate, is the dried root and rhizome of Sophora tonkinensis Gagnep. Sophora subprostrate polysaccharide (SSP1) was extracted from Sophora subprostrate, which has shown good anti-inflammatory and antioxidant effects. Previous studies showed SSP1 could modulate inflammat...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yi, Jia, Nina, Xie, Xiaodong, Chen, Qi, Hu, Tingjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377888/
https://www.ncbi.nlm.nih.gov/pubmed/37504299
http://dx.doi.org/10.3390/cimb45070383
Descripción
Sumario:(1) Background: Sophora subprostrate, is the dried root and rhizome of Sophora tonkinensis Gagnep. Sophora subprostrate polysaccharide (SSP1) was extracted from Sophora subprostrate, which has shown good anti-inflammatory and antioxidant effects. Previous studies showed SSP1 could modulate inflammatory damage induced by porcine circovirus type 2 (PCV2) in murine splenic lymphocytes, but the specific regulatory mechanism is unclear. (2) Methods: Whole transcriptome analysis was used to characterize the differentially expressed mRNA, lncRNA, and miRNA in PCV2-infected cells and SSP1-treated infected cells. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and other analyses were used to screen for key inflammation-related differentially expressed genes. The sequencing results were verified by RT-qPCR, and western blot was used to verify the key protein in main enriched signal pathways. (3) Results: SSP1 can regulate inflammation-related gene changes induced by PCV2, and its interventional mechanism is mainly involved in the key differential miRNA including miR-7032-y, miR-328-y, and miR-484-z. These inflammation-related genes were mainly enriched in the TNF signal pathway and NF-κB signal pathway, and SSP1 could significantly inhibit the protein expression levels of p-IκB, p-p65, TNF-α, IRF1, GBP2 and p-SAMHD1 to alleviate inflammatory damage. (4) Conclusions: The mechanism of SSP1 regulating PCV2-induced murine splenic lymphocyte inflammation was explored from a whole transcriptome perspective, which provides a theoretical basis for the practical application of SSP1.