Cargando…

Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks

We study the transition to synchronization in large, dense networks of chaotic circle maps, where an exact solution of the mean-field dynamics in the infinite network and all-to-all coupling limit is known. In dense networks of finite size and link probability of smaller than one, the incoherent sta...

Descripción completa

Detalles Bibliográficos
Autores principales: Mendonca, Hans Muller, Tönjes, Ralf, Pereira, Tiago
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377925/
https://www.ncbi.nlm.nih.gov/pubmed/37509930
http://dx.doi.org/10.3390/e25070983
_version_ 1785079638666510336
author Mendonca, Hans Muller
Tönjes, Ralf
Pereira, Tiago
author_facet Mendonca, Hans Muller
Tönjes, Ralf
Pereira, Tiago
author_sort Mendonca, Hans Muller
collection PubMed
description We study the transition to synchronization in large, dense networks of chaotic circle maps, where an exact solution of the mean-field dynamics in the infinite network and all-to-all coupling limit is known. In dense networks of finite size and link probability of smaller than one, the incoherent state is meta-stable for coupling strengths that are larger than the mean-field critical coupling. We observe chaotic transients with exponentially distributed escape times and study the scaling behavior of the mean time to synchronization.
format Online
Article
Text
id pubmed-10377925
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103779252023-07-29 Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks Mendonca, Hans Muller Tönjes, Ralf Pereira, Tiago Entropy (Basel) Article We study the transition to synchronization in large, dense networks of chaotic circle maps, where an exact solution of the mean-field dynamics in the infinite network and all-to-all coupling limit is known. In dense networks of finite size and link probability of smaller than one, the incoherent state is meta-stable for coupling strengths that are larger than the mean-field critical coupling. We observe chaotic transients with exponentially distributed escape times and study the scaling behavior of the mean time to synchronization. MDPI 2023-06-27 /pmc/articles/PMC10377925/ /pubmed/37509930 http://dx.doi.org/10.3390/e25070983 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mendonca, Hans Muller
Tönjes, Ralf
Pereira, Tiago
Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks
title Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks
title_full Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks
title_fullStr Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks
title_full_unstemmed Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks
title_short Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks
title_sort exponentially long transient time to synchronization of coupled chaotic circle maps in dense random networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377925/
https://www.ncbi.nlm.nih.gov/pubmed/37509930
http://dx.doi.org/10.3390/e25070983
work_keys_str_mv AT mendoncahansmuller exponentiallylongtransienttimetosynchronizationofcoupledchaoticcirclemapsindenserandomnetworks
AT tonjesralf exponentiallylongtransienttimetosynchronizationofcoupledchaoticcirclemapsindenserandomnetworks
AT pereiratiago exponentiallylongtransienttimetosynchronizationofcoupledchaoticcirclemapsindenserandomnetworks