Cargando…
Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks
We study the transition to synchronization in large, dense networks of chaotic circle maps, where an exact solution of the mean-field dynamics in the infinite network and all-to-all coupling limit is known. In dense networks of finite size and link probability of smaller than one, the incoherent sta...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377925/ https://www.ncbi.nlm.nih.gov/pubmed/37509930 http://dx.doi.org/10.3390/e25070983 |
_version_ | 1785079638666510336 |
---|---|
author | Mendonca, Hans Muller Tönjes, Ralf Pereira, Tiago |
author_facet | Mendonca, Hans Muller Tönjes, Ralf Pereira, Tiago |
author_sort | Mendonca, Hans Muller |
collection | PubMed |
description | We study the transition to synchronization in large, dense networks of chaotic circle maps, where an exact solution of the mean-field dynamics in the infinite network and all-to-all coupling limit is known. In dense networks of finite size and link probability of smaller than one, the incoherent state is meta-stable for coupling strengths that are larger than the mean-field critical coupling. We observe chaotic transients with exponentially distributed escape times and study the scaling behavior of the mean time to synchronization. |
format | Online Article Text |
id | pubmed-10377925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103779252023-07-29 Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks Mendonca, Hans Muller Tönjes, Ralf Pereira, Tiago Entropy (Basel) Article We study the transition to synchronization in large, dense networks of chaotic circle maps, where an exact solution of the mean-field dynamics in the infinite network and all-to-all coupling limit is known. In dense networks of finite size and link probability of smaller than one, the incoherent state is meta-stable for coupling strengths that are larger than the mean-field critical coupling. We observe chaotic transients with exponentially distributed escape times and study the scaling behavior of the mean time to synchronization. MDPI 2023-06-27 /pmc/articles/PMC10377925/ /pubmed/37509930 http://dx.doi.org/10.3390/e25070983 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mendonca, Hans Muller Tönjes, Ralf Pereira, Tiago Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks |
title | Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks |
title_full | Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks |
title_fullStr | Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks |
title_full_unstemmed | Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks |
title_short | Exponentially Long Transient Time to Synchronization of Coupled Chaotic Circle Maps in Dense Random Networks |
title_sort | exponentially long transient time to synchronization of coupled chaotic circle maps in dense random networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377925/ https://www.ncbi.nlm.nih.gov/pubmed/37509930 http://dx.doi.org/10.3390/e25070983 |
work_keys_str_mv | AT mendoncahansmuller exponentiallylongtransienttimetosynchronizationofcoupledchaoticcirclemapsindenserandomnetworks AT tonjesralf exponentiallylongtransienttimetosynchronizationofcoupledchaoticcirclemapsindenserandomnetworks AT pereiratiago exponentiallylongtransienttimetosynchronizationofcoupledchaoticcirclemapsindenserandomnetworks |