Cargando…
On Neural Networks Fitting, Compression, and Generalization Behavior via Information-Bottleneck-like Approaches
It is well-known that a neural network learning process—along with its connections to fitting, compression, and generalization—is not yet well understood. In this paper, we propose a novel approach to capturing such neural network dynamics using information-bottleneck-type techniques, involving the...
Autores principales: | Lyu, Zhaoyan, Aminian, Gholamali, Rodrigues, Miguel R. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377965/ https://www.ncbi.nlm.nih.gov/pubmed/37510010 http://dx.doi.org/10.3390/e25071063 |
Ejemplares similares
-
Bottlenecks, Modularity, and the Neural Control of Behavior
por: Nande, Anjalika, et al.
Publicado: (2022) -
Markov Information Bottleneck to Improve Information Flow in Stochastic Neural Networks
por: Tang Nguyen, Thanh, et al.
Publicado: (2019) -
On the Difference between the Information Bottleneck and the Deep Information Bottleneck
por: Wieczorek, Aleksander, et al.
Publicado: (2020) -
Utilizing Information Bottleneck to Evaluate the Capability of Deep Neural Networks for Image Classification †
por: Cheng, Hao, et al.
Publicado: (2019) -
Novel Convolutional Neural Network with Variational Information Bottleneck for P300 Detection
por: Liao, Hongpeng, et al.
Publicado: (2020)