Cargando…
High-Speed Videoendoscopy Enhances the Objective Assessment of Glottic Organic Lesions: A Case-Control Study with Multivariable Data-Mining Model Development
SIMPLE SUMMARY: The standard protocol for distinguishing between benign and malignant lesions remains clinical judgment and histopathological confirmation by an experienced otolaryngologist. An additional tool is high-speed videoendoscopy (HSV), an accurate method for an objective assessment of voca...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378075/ https://www.ncbi.nlm.nih.gov/pubmed/37509377 http://dx.doi.org/10.3390/cancers15143716 |
Sumario: | SIMPLE SUMMARY: The standard protocol for distinguishing between benign and malignant lesions remains clinical judgment and histopathological confirmation by an experienced otolaryngologist. An additional tool is high-speed videoendoscopy (HSV), an accurate method for an objective assessment of vocal fold oscillations. The aim of the study was to utilize a quantitative assessment of the vibratory characteristics of vocal folds in diagnosing benign and malignant lesions of the glottis using HSV. The machine learning model identifying malignancy among organic lesions reached an AUC equal to 0.85 and presented with 80.6% accuracy, 100% sensitivity, and 71.1% specificity on the training set. Important predictive factors were frequency perturbation measures. The results suggested that advanced machine learning models based on HSV analysis could potentially indicate a heightened risk of cancerous mass. Therefore, this technology could, in future, aid in early cancer detection; however, further investigation and validation is needed. ABSTRACT: The aim of the study was to utilize a quantitative assessment of the vibratory characteristics of vocal folds in diagnosing benign and malignant lesions of the glottis using high-speed videolaryngoscopy (HSV). Methods: Case-control study including 100 patients with unilateral vocal fold lesions in comparison to 38 normophonic subjects. Quantitative assessment with the determination of vocal fold oscillation parameters was performed based on HSV kymography. Machine-learning predictive models were developed and validated. Results: All calculated parameters differed significantly between healthy subjects and patients with organic lesions. The first predictive model distinguishing any organic lesion patients from healthy subjects reached an area under the curve (AUC) equal to 0.983 and presented with 89.3% accuracy, 97.0% sensitivity, and 71.4% specificity on the testing set. The second model identifying malignancy among organic lesions reached an AUC equal to 0.85 and presented with 80.6% accuracy, 100% sensitivity, and 71.1% specificity on the training set. Important predictive factors for the models were frequency perturbation measures. Conclusions: The standard protocol for distinguishing between benign and malignant lesions continues to be clinical evaluation by an experienced ENT specialist and confirmed by histopathological examination. Our findings did suggest that advanced machine learning models, which consider the complex interactions present in HSV data, could potentially indicate a heightened risk of malignancy. Therefore, this technology could prove pivotal in aiding in early cancer detection, thereby emphasizing the need for further investigation and validation. |
---|