Cargando…
Packaging of DNA Integrated with Metal Nanoparticles in Solution
The transformation of high-molecular DNA from a random swollen coil in a solution to a discrete nanosized particle with the ordered packaging of a rigid and highly charged double-stranded molecule is one of the amazing phenomena of polymer physics. DNA condensation is a well-known phenomenon in biol...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378076/ https://www.ncbi.nlm.nih.gov/pubmed/37509999 http://dx.doi.org/10.3390/e25071052 |
_version_ | 1785079676411052032 |
---|---|
author | Kasyanenko, Nina Baryshev, Andrei Artamonova, Daria Sokolov, Petr |
author_facet | Kasyanenko, Nina Baryshev, Andrei Artamonova, Daria Sokolov, Petr |
author_sort | Kasyanenko, Nina |
collection | PubMed |
description | The transformation of high-molecular DNA from a random swollen coil in a solution to a discrete nanosized particle with the ordered packaging of a rigid and highly charged double-stranded molecule is one of the amazing phenomena of polymer physics. DNA condensation is a well-known phenomenon in biological systems, yet its molecular mechanism is not clear. Understanding the processes occurring in vivo is necessary for the usage of DNA in the fabrication of new biologically significant nanostructures. Entropy plays a very important role in DNA condensation. DNA conjugates with metal nanoparticles are useful in various fields of nanotechnology. In particular, they can serve as a basis for creating multicomponent nanoplatforms for theranostics. DNA must be in a compact state in such constructions. In this paper, we tested the methods of DNA integration with silver, gold and palladium nanoparticles and analyzed the properties of DNA conjugates with metal nanoparticles using the methods of atomic force microscopy, spectroscopy, viscometry and dynamic light scattering. DNA size, stability and rigidity (persistence length), as well as plasmon resonance peaks in the absorption spectra of systems were studied. The methods for DNA condensation with metal nanoparticles were analyzed. |
format | Online Article Text |
id | pubmed-10378076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103780762023-07-29 Packaging of DNA Integrated with Metal Nanoparticles in Solution Kasyanenko, Nina Baryshev, Andrei Artamonova, Daria Sokolov, Petr Entropy (Basel) Article The transformation of high-molecular DNA from a random swollen coil in a solution to a discrete nanosized particle with the ordered packaging of a rigid and highly charged double-stranded molecule is one of the amazing phenomena of polymer physics. DNA condensation is a well-known phenomenon in biological systems, yet its molecular mechanism is not clear. Understanding the processes occurring in vivo is necessary for the usage of DNA in the fabrication of new biologically significant nanostructures. Entropy plays a very important role in DNA condensation. DNA conjugates with metal nanoparticles are useful in various fields of nanotechnology. In particular, they can serve as a basis for creating multicomponent nanoplatforms for theranostics. DNA must be in a compact state in such constructions. In this paper, we tested the methods of DNA integration with silver, gold and palladium nanoparticles and analyzed the properties of DNA conjugates with metal nanoparticles using the methods of atomic force microscopy, spectroscopy, viscometry and dynamic light scattering. DNA size, stability and rigidity (persistence length), as well as plasmon resonance peaks in the absorption spectra of systems were studied. The methods for DNA condensation with metal nanoparticles were analyzed. MDPI 2023-07-12 /pmc/articles/PMC10378076/ /pubmed/37509999 http://dx.doi.org/10.3390/e25071052 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kasyanenko, Nina Baryshev, Andrei Artamonova, Daria Sokolov, Petr Packaging of DNA Integrated with Metal Nanoparticles in Solution |
title | Packaging of DNA Integrated with Metal Nanoparticles in Solution |
title_full | Packaging of DNA Integrated with Metal Nanoparticles in Solution |
title_fullStr | Packaging of DNA Integrated with Metal Nanoparticles in Solution |
title_full_unstemmed | Packaging of DNA Integrated with Metal Nanoparticles in Solution |
title_short | Packaging of DNA Integrated with Metal Nanoparticles in Solution |
title_sort | packaging of dna integrated with metal nanoparticles in solution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378076/ https://www.ncbi.nlm.nih.gov/pubmed/37509999 http://dx.doi.org/10.3390/e25071052 |
work_keys_str_mv | AT kasyanenkonina packagingofdnaintegratedwithmetalnanoparticlesinsolution AT baryshevandrei packagingofdnaintegratedwithmetalnanoparticlesinsolution AT artamonovadaria packagingofdnaintegratedwithmetalnanoparticlesinsolution AT sokolovpetr packagingofdnaintegratedwithmetalnanoparticlesinsolution |