Cargando…
Feature Fusion Based on Graph Convolution Network for Modulation Classification in Underwater Communication
Automatic modulation classification (AMC) of underwater acoustic communication signals is of great significance in national defense and marine military. Accurate modulation classification methods can make great contributions to accurately grasping the parameters and characteristics of enemy communic...
Autores principales: | Yao, Xiaohui, Yang, Honghui, Sheng, Meiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378091/ https://www.ncbi.nlm.nih.gov/pubmed/37510043 http://dx.doi.org/10.3390/e25071096 |
Ejemplares similares
-
Automatic Modulation Classification for Underwater Acoustic Communication Signals Based on Deep Complex Networks
por: Yao, Xiaohui, et al.
Publicado: (2023) -
Ship Type Classification by Convolutional Neural Networks with Auditory-Like Mechanisms
por: Shen, Sheng, et al.
Publicado: (2020) -
Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2018) -
Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
Compression of a Deep Competitive Network Based on Mutual Information for Underwater Acoustic Targets Recognition
por: Shen, Sheng, et al.
Publicado: (2018)