Cargando…

The Genetic Structures and Molecular Mechanisms Underlying Ear Traits in Maize (Zea mays L.)

Maize (Zea mays L.) is one of the world’s staple food crops. In order to feed the growing world population, improving maize yield is a top priority for breeding programs. Ear traits are important determinants of maize yield, and are mostly quantitatively inherited. To date, many studies relating to...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Zhenying, Wang, Yanbo, Bao, Jianxi, Li, Ya’nan, Yin, Zechao, Long, Yan, Wan, Xiangyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378120/
https://www.ncbi.nlm.nih.gov/pubmed/37508564
http://dx.doi.org/10.3390/cells12141900
Descripción
Sumario:Maize (Zea mays L.) is one of the world’s staple food crops. In order to feed the growing world population, improving maize yield is a top priority for breeding programs. Ear traits are important determinants of maize yield, and are mostly quantitatively inherited. To date, many studies relating to the genetic and molecular dissection of ear traits have been performed; therefore, we explored the genetic loci of the ear traits that were previously discovered in the genome-wide association study (GWAS) and quantitative trait locus (QTL) mapping studies, and refined 153 QTL and 85 quantitative trait nucleotide (QTN) clusters. Next, we shortlisted 19 common intervals (CIs) that can be detected simultaneously by both QTL mapping and GWAS, and 40 CIs that have pleiotropic effects on ear traits. Further, we predicted the best possible candidate genes from 71 QTL and 25 QTN clusters that could be valuable for maize yield improvement.