Cargando…
Recurrence and Eigenfunction Methods for Non-Trivial Models of Discrete Binary Choice
Understanding how systems relax to equilibrium is a core theme of statistical physics, especially in economics, where systems are known to be subject to extrinsic noise not included in simple agent-based models. In models of binary choice—ones not much more complicated than Kirman’s model of ant rec...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378129/ https://www.ncbi.nlm.nih.gov/pubmed/37509943 http://dx.doi.org/10.3390/e25070996 |
_version_ | 1785079689527689216 |
---|---|
author | Holehouse, James |
author_facet | Holehouse, James |
author_sort | Holehouse, James |
collection | PubMed |
description | Understanding how systems relax to equilibrium is a core theme of statistical physics, especially in economics, where systems are known to be subject to extrinsic noise not included in simple agent-based models. In models of binary choice—ones not much more complicated than Kirman’s model of ant recruitment—such relaxation dynamics become difficult to determine analytically and require solving a three-term recurrence relation in the eigendecomposition of the stochastic process. In this paper, we derive a concise closed-form solution to this linear three-term recurrence relation. Its solution has traditionally relied on cumbersome continued fractions, and we instead employ a linear algebraic approach that leverages the properties of lower-triangular and tridiagonal matrices to express the terms in the recurrence relation using a finite set of orthogonal polynomials. We pay special attention to the power series coefficients of Heun functions, which are also important in fields such as quantum mechanics and general relativity, as well as the binary choice models studied here. We then apply the solution to find equations describing the relaxation to steady-state behavior in social choice models through eigendecomposition. This application showcases the potential of our solution as an off-the-shelf solution to the recurrence that has not previously been reported, allowing for the easy identification of the eigenspectra of one-dimensional, one-step, continuous-time Markov processes. |
format | Online Article Text |
id | pubmed-10378129 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103781292023-07-29 Recurrence and Eigenfunction Methods for Non-Trivial Models of Discrete Binary Choice Holehouse, James Entropy (Basel) Article Understanding how systems relax to equilibrium is a core theme of statistical physics, especially in economics, where systems are known to be subject to extrinsic noise not included in simple agent-based models. In models of binary choice—ones not much more complicated than Kirman’s model of ant recruitment—such relaxation dynamics become difficult to determine analytically and require solving a three-term recurrence relation in the eigendecomposition of the stochastic process. In this paper, we derive a concise closed-form solution to this linear three-term recurrence relation. Its solution has traditionally relied on cumbersome continued fractions, and we instead employ a linear algebraic approach that leverages the properties of lower-triangular and tridiagonal matrices to express the terms in the recurrence relation using a finite set of orthogonal polynomials. We pay special attention to the power series coefficients of Heun functions, which are also important in fields such as quantum mechanics and general relativity, as well as the binary choice models studied here. We then apply the solution to find equations describing the relaxation to steady-state behavior in social choice models through eigendecomposition. This application showcases the potential of our solution as an off-the-shelf solution to the recurrence that has not previously been reported, allowing for the easy identification of the eigenspectra of one-dimensional, one-step, continuous-time Markov processes. MDPI 2023-06-29 /pmc/articles/PMC10378129/ /pubmed/37509943 http://dx.doi.org/10.3390/e25070996 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Holehouse, James Recurrence and Eigenfunction Methods for Non-Trivial Models of Discrete Binary Choice |
title | Recurrence and Eigenfunction Methods for Non-Trivial Models of Discrete Binary Choice |
title_full | Recurrence and Eigenfunction Methods for Non-Trivial Models of Discrete Binary Choice |
title_fullStr | Recurrence and Eigenfunction Methods for Non-Trivial Models of Discrete Binary Choice |
title_full_unstemmed | Recurrence and Eigenfunction Methods for Non-Trivial Models of Discrete Binary Choice |
title_short | Recurrence and Eigenfunction Methods for Non-Trivial Models of Discrete Binary Choice |
title_sort | recurrence and eigenfunction methods for non-trivial models of discrete binary choice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378129/ https://www.ncbi.nlm.nih.gov/pubmed/37509943 http://dx.doi.org/10.3390/e25070996 |
work_keys_str_mv | AT holehousejames recurrenceandeigenfunctionmethodsfornontrivialmodelsofdiscretebinarychoice |