Cargando…
Having it both ways: how STAT3 deficiency blocks graft-versus-host disease while preserving graft-versus-leukemia activity
Allogeneic hematopoietic cell transplantation can cure patients with high-risk leukemia through graft-versus-leukemia (GVL) effects, the process by which malignant leukemic cells are cleared by donor-derived immune cells from the graft. The problem of harnessing GVL effects while controlling inflamm...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378150/ https://www.ncbi.nlm.nih.gov/pubmed/37526083 http://dx.doi.org/10.1172/JCI172251 |
Sumario: | Allogeneic hematopoietic cell transplantation can cure patients with high-risk leukemia through graft-versus-leukemia (GVL) effects, the process by which malignant leukemic cells are cleared by donor-derived immune cells from the graft. The problem of harnessing GVL effects while controlling inflammation and host-organ damage linked with graft-versus-host disease (GVHD) has been the most formidable hurdle facing allogeneic hematopoietic cell transplantation. This powerful, curative-intent therapy remains among the most toxic treatments in the hematologist’s armamentarium due to the combined risks of GVHD-related morbidity, infections, and leukemia relapse. In this issue of the JCI, Li, Wang, et al. report that T cell Stat3 deficiency can extricate GVL effects from GVHD through tissue-specific programmed death-ligand 1/programmed cell death protein 1–dependent (PD-L1/PD-1-dependent) bioenergetic alterations that blunt harmful T cell effects in GVHD target organs, while preserving their beneficial antitumor activity in lymphohematopoietic tissues. |
---|