Cargando…
Mixed-Input Deep Learning Approach to Sleep/Wake State Classification by Using EEG Signals
Sleep stage classification plays a pivotal role in predicting and diagnosing numerous health issues from human sleep data. Manual sleep staging requires human expertise, which is occasionally prone to error and variation. In recent times, availability of polysomnography data has aided progress in au...
Autores principales: | Hasan, Md. Nazmul, Koo, Insoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378260/ https://www.ncbi.nlm.nih.gov/pubmed/37510104 http://dx.doi.org/10.3390/diagnostics13142358 |
Ejemplares similares
-
Multi-Input CNN-LSTM deep learning model for fear level classification based on EEG and peripheral physiological signals
por: Masuda, Nagisa, et al.
Publicado: (2023) -
A Deep Transfer Learning Framework for Sleep Stage Classification with Single-Channel EEG Signals
por: ElMoaqet, Hisham, et al.
Publicado: (2022) -
Local Properties of Vigilance States: EMD Analysis of EEG Signals during Sleep-Waking States of Freely Moving Rats
por: Kumar, Rupesh, et al.
Publicado: (2013) -
A Deep Learning Method Approach for Sleep Stage Classification with EEG Spectrogram
por: Li, Chengfan, et al.
Publicado: (2022) -
Machine Learning-Based Classification to Disentangle EEG Responses to TMS and Auditory Input
por: Cristofari, Andrea, et al.
Publicado: (2023)