Cargando…
A Variational Synthesis of Evolutionary and Developmental Dynamics
This paper introduces a variational formulation of natural selection, paying special attention to the nature of ‘things’ and the way that different ‘kinds’ of ‘things’ are individuated from—and influence—each other. We use the Bayesian mechanics of particular partitions to understand how slow phylog...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378262/ https://www.ncbi.nlm.nih.gov/pubmed/37509911 http://dx.doi.org/10.3390/e25070964 |
_version_ | 1785079722209705984 |
---|---|
author | Friston, Karl Friedman, Daniel A. Constant, Axel Knight, V. Bleu Fields, Chris Parr, Thomas Campbell, John O. |
author_facet | Friston, Karl Friedman, Daniel A. Constant, Axel Knight, V. Bleu Fields, Chris Parr, Thomas Campbell, John O. |
author_sort | Friston, Karl |
collection | PubMed |
description | This paper introduces a variational formulation of natural selection, paying special attention to the nature of ‘things’ and the way that different ‘kinds’ of ‘things’ are individuated from—and influence—each other. We use the Bayesian mechanics of particular partitions to understand how slow phylogenetic processes constrain—and are constrained by—fast, phenotypic processes. The main result is a formulation of adaptive fitness as a path integral of phenotypic fitness. Paths of least action, at the phenotypic and phylogenetic scales, can then be read as inference and learning processes, respectively. In this view, a phenotype actively infers the state of its econiche under a generative model, whose parameters are learned via natural (Bayesian model) selection. The ensuing variational synthesis features some unexpected aspects. Perhaps the most notable is that it is not possible to describe or model a population of conspecifics per se. Rather, it is necessary to consider populations of distinct natural kinds that influence each other. This paper is limited to a description of the mathematical apparatus and accompanying ideas. Subsequent work will use these methods for simulations and numerical analyses—and identify points of contact with related mathematical formulations of evolution. |
format | Online Article Text |
id | pubmed-10378262 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103782622023-07-29 A Variational Synthesis of Evolutionary and Developmental Dynamics Friston, Karl Friedman, Daniel A. Constant, Axel Knight, V. Bleu Fields, Chris Parr, Thomas Campbell, John O. Entropy (Basel) Article This paper introduces a variational formulation of natural selection, paying special attention to the nature of ‘things’ and the way that different ‘kinds’ of ‘things’ are individuated from—and influence—each other. We use the Bayesian mechanics of particular partitions to understand how slow phylogenetic processes constrain—and are constrained by—fast, phenotypic processes. The main result is a formulation of adaptive fitness as a path integral of phenotypic fitness. Paths of least action, at the phenotypic and phylogenetic scales, can then be read as inference and learning processes, respectively. In this view, a phenotype actively infers the state of its econiche under a generative model, whose parameters are learned via natural (Bayesian model) selection. The ensuing variational synthesis features some unexpected aspects. Perhaps the most notable is that it is not possible to describe or model a population of conspecifics per se. Rather, it is necessary to consider populations of distinct natural kinds that influence each other. This paper is limited to a description of the mathematical apparatus and accompanying ideas. Subsequent work will use these methods for simulations and numerical analyses—and identify points of contact with related mathematical formulations of evolution. MDPI 2023-06-21 /pmc/articles/PMC10378262/ /pubmed/37509911 http://dx.doi.org/10.3390/e25070964 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Friston, Karl Friedman, Daniel A. Constant, Axel Knight, V. Bleu Fields, Chris Parr, Thomas Campbell, John O. A Variational Synthesis of Evolutionary and Developmental Dynamics |
title | A Variational Synthesis of Evolutionary and Developmental Dynamics |
title_full | A Variational Synthesis of Evolutionary and Developmental Dynamics |
title_fullStr | A Variational Synthesis of Evolutionary and Developmental Dynamics |
title_full_unstemmed | A Variational Synthesis of Evolutionary and Developmental Dynamics |
title_short | A Variational Synthesis of Evolutionary and Developmental Dynamics |
title_sort | variational synthesis of evolutionary and developmental dynamics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378262/ https://www.ncbi.nlm.nih.gov/pubmed/37509911 http://dx.doi.org/10.3390/e25070964 |
work_keys_str_mv | AT fristonkarl avariationalsynthesisofevolutionaryanddevelopmentaldynamics AT friedmandaniela avariationalsynthesisofevolutionaryanddevelopmentaldynamics AT constantaxel avariationalsynthesisofevolutionaryanddevelopmentaldynamics AT knightvbleu avariationalsynthesisofevolutionaryanddevelopmentaldynamics AT fieldschris avariationalsynthesisofevolutionaryanddevelopmentaldynamics AT parrthomas avariationalsynthesisofevolutionaryanddevelopmentaldynamics AT campbelljohno avariationalsynthesisofevolutionaryanddevelopmentaldynamics AT fristonkarl variationalsynthesisofevolutionaryanddevelopmentaldynamics AT friedmandaniela variationalsynthesisofevolutionaryanddevelopmentaldynamics AT constantaxel variationalsynthesisofevolutionaryanddevelopmentaldynamics AT knightvbleu variationalsynthesisofevolutionaryanddevelopmentaldynamics AT fieldschris variationalsynthesisofevolutionaryanddevelopmentaldynamics AT parrthomas variationalsynthesisofevolutionaryanddevelopmentaldynamics AT campbelljohno variationalsynthesisofevolutionaryanddevelopmentaldynamics |