Cargando…
Quantum Adversarial Transfer Learning
Adversarial transfer learning is a machine learning method that employs an adversarial training process to learn the datasets of different domains. Recently, this method has attracted attention because it can efficiently decouple the requirements of tasks from insufficient target data. In this study...
Autores principales: | Wang, Longhan, Sun, Yifan, Zhang, Xiangdong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378263/ https://www.ncbi.nlm.nih.gov/pubmed/37510037 http://dx.doi.org/10.3390/e25071090 |
Ejemplares similares
-
Quantum generative adversarial learning in a superconducting quantum circuit
por: Hu, Ling, et al.
Publicado: (2019) -
Adversarial Deep Transfer Learning in Fault Diagnosis: Progress, Challenges, and Future Prospects
por: Guo, Yu, et al.
Publicado: (2023) -
Improving the adversarial transferability with relational graphs ensemble adversarial attack
por: Pi, Jiatian, et al.
Publicado: (2023) -
Disrupting adversarial transferability in deep neural networks
por: Wiedeman, Christopher, et al.
Publicado: (2022) -
Dictionary Learning Based Scheme for Adversarial Defense in Continuous-Variable Quantum Key Distribution
por: Li, Shimiao, et al.
Publicado: (2023)