Cargando…
Multiple Self-Supervised Auxiliary Tasks for Target-Driven Visual Navigation Using Deep Reinforcement Learning
Visual navigation based on deep reinforcement learning requires a large amount of interaction with the environment, and due to the reward sparsity, it requires a large amount of training time and computational resources. In this paper, we focus on sample efficiency and navigation performance and pro...
Autores principales: | Zhang, Wenzhi, He, Li, Wang, Hongwei, Yuan, Liang, Xiao, Wendong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378290/ https://www.ncbi.nlm.nih.gov/pubmed/37509957 http://dx.doi.org/10.3390/e25071007 |
Ejemplares similares
-
Survey on Self-Supervised Learning: Auxiliary Pretext Tasks and Contrastive Learning Methods in Imaging
por: Albelwi, Saleh
Publicado: (2022) -
Multimodal Deep Reinforcement Learning with Auxiliary Task for Obstacle Avoidance of Indoor Mobile Robot
por: Song, Hailuo, et al.
Publicado: (2021) -
Skin Lesion Segmentation Using Deep Learning with Auxiliary Task
por: Liu, Lina, et al.
Publicado: (2021) -
Task-Driven Learned Hyperspectral Data Reduction Using End-to-End Supervised Deep Learning
por: Zeegers, Mathé T., et al.
Publicado: (2020) -
Deep supervised learning using self-adaptive auxiliary loss for COVID-19 diagnosis from imbalanced CT images
por: Hu, Kai, et al.
Publicado: (2021)