Cargando…

Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma

Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL)...

Descripción completa

Detalles Bibliográficos
Autores principales: Gozzi, Fabrizio, Bertolini, Marco, Gentile, Pietro, Verzellesi, Laura, Trojani, Valeria, De Simone, Luca, Bolletta, Elena, Mastrofilippo, Valentina, Farnetti, Enrico, Nicoli, Davide, Croci, Stefania, Belloni, Lucia, Zerbini, Alessandro, Adani, Chantal, De Maria, Michele, Kosmarikou, Areti, Vecchi, Marco, Invernizzi, Alessandro, Ilariucci, Fiorella, Zanelli, Magda, Iori, Mauro, Cimino, Luca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378347/
https://www.ncbi.nlm.nih.gov/pubmed/37510195
http://dx.doi.org/10.3390/diagnostics13142451
_version_ 1785079742803738624
author Gozzi, Fabrizio
Bertolini, Marco
Gentile, Pietro
Verzellesi, Laura
Trojani, Valeria
De Simone, Luca
Bolletta, Elena
Mastrofilippo, Valentina
Farnetti, Enrico
Nicoli, Davide
Croci, Stefania
Belloni, Lucia
Zerbini, Alessandro
Adani, Chantal
De Maria, Michele
Kosmarikou, Areti
Vecchi, Marco
Invernizzi, Alessandro
Ilariucci, Fiorella
Zanelli, Magda
Iori, Mauro
Cimino, Luca
author_facet Gozzi, Fabrizio
Bertolini, Marco
Gentile, Pietro
Verzellesi, Laura
Trojani, Valeria
De Simone, Luca
Bolletta, Elena
Mastrofilippo, Valentina
Farnetti, Enrico
Nicoli, Davide
Croci, Stefania
Belloni, Lucia
Zerbini, Alessandro
Adani, Chantal
De Maria, Michele
Kosmarikou, Areti
Vecchi, Marco
Invernizzi, Alessandro
Ilariucci, Fiorella
Zanelli, Magda
Iori, Mauro
Cimino, Luca
author_sort Gozzi, Fabrizio
collection PubMed
description Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL) and vitritis in uveitis. We studied AS-OCT images from 28 patients (11 with biopsy-proven VRL and 17 with differential diagnosis uveitis) using publicly available radiomics software written in MATLAB. Patients were divided into two balanced groups: training and testing. Overall, 3260/3705 (88%) AS-OCT images met our defined quality criteria, making them eligible for analysis. We studied five different sets of grey-level samplings (16, 32, 64, 128, and 256 levels), finding that 128 grey levels performed the best. We selected the five most effective radiomic features ranked by the ability to predict the class (VRL or uveitis). We built a classification model using the xgboost python function; through our model, 87% of eyes were correctly diagnosed as VRL or uveitis, regardless of exam technique or lens status. Areas under the receiver operating characteristic curves (AUC) in the 128 grey-level model were 0.95 [CI 0.94, 0.96] and 0.84 for training and testing datasets, respectively. This preliminary retrospective study highlights how AS-OCT can support ophthalmologists when there is clinical suspicion of VRL.
format Online
Article
Text
id pubmed-10378347
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103783472023-07-29 Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma Gozzi, Fabrizio Bertolini, Marco Gentile, Pietro Verzellesi, Laura Trojani, Valeria De Simone, Luca Bolletta, Elena Mastrofilippo, Valentina Farnetti, Enrico Nicoli, Davide Croci, Stefania Belloni, Lucia Zerbini, Alessandro Adani, Chantal De Maria, Michele Kosmarikou, Areti Vecchi, Marco Invernizzi, Alessandro Ilariucci, Fiorella Zanelli, Magda Iori, Mauro Cimino, Luca Diagnostics (Basel) Article Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL) and vitritis in uveitis. We studied AS-OCT images from 28 patients (11 with biopsy-proven VRL and 17 with differential diagnosis uveitis) using publicly available radiomics software written in MATLAB. Patients were divided into two balanced groups: training and testing. Overall, 3260/3705 (88%) AS-OCT images met our defined quality criteria, making them eligible for analysis. We studied five different sets of grey-level samplings (16, 32, 64, 128, and 256 levels), finding that 128 grey levels performed the best. We selected the five most effective radiomic features ranked by the ability to predict the class (VRL or uveitis). We built a classification model using the xgboost python function; through our model, 87% of eyes were correctly diagnosed as VRL or uveitis, regardless of exam technique or lens status. Areas under the receiver operating characteristic curves (AUC) in the 128 grey-level model were 0.95 [CI 0.94, 0.96] and 0.84 for training and testing datasets, respectively. This preliminary retrospective study highlights how AS-OCT can support ophthalmologists when there is clinical suspicion of VRL. MDPI 2023-07-23 /pmc/articles/PMC10378347/ /pubmed/37510195 http://dx.doi.org/10.3390/diagnostics13142451 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gozzi, Fabrizio
Bertolini, Marco
Gentile, Pietro
Verzellesi, Laura
Trojani, Valeria
De Simone, Luca
Bolletta, Elena
Mastrofilippo, Valentina
Farnetti, Enrico
Nicoli, Davide
Croci, Stefania
Belloni, Lucia
Zerbini, Alessandro
Adani, Chantal
De Maria, Michele
Kosmarikou, Areti
Vecchi, Marco
Invernizzi, Alessandro
Ilariucci, Fiorella
Zanelli, Magda
Iori, Mauro
Cimino, Luca
Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
title Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
title_full Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
title_fullStr Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
title_full_unstemmed Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
title_short Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
title_sort artificial intelligence-assisted processing of anterior segment oct images in the diagnosis of vitreoretinal lymphoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378347/
https://www.ncbi.nlm.nih.gov/pubmed/37510195
http://dx.doi.org/10.3390/diagnostics13142451
work_keys_str_mv AT gozzifabrizio artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT bertolinimarco artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT gentilepietro artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT verzellesilaura artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT trojanivaleria artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT desimoneluca artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT bollettaelena artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT mastrofilippovalentina artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT farnettienrico artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT nicolidavide artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT crocistefania artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT bellonilucia artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT zerbinialessandro artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT adanichantal artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT demariamichele artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT kosmarikouareti artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT vecchimarco artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT invernizzialessandro artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT ilariuccifiorella artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT zanellimagda artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT iorimauro artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma
AT ciminoluca artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma