Cargando…
Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL)...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378347/ https://www.ncbi.nlm.nih.gov/pubmed/37510195 http://dx.doi.org/10.3390/diagnostics13142451 |
_version_ | 1785079742803738624 |
---|---|
author | Gozzi, Fabrizio Bertolini, Marco Gentile, Pietro Verzellesi, Laura Trojani, Valeria De Simone, Luca Bolletta, Elena Mastrofilippo, Valentina Farnetti, Enrico Nicoli, Davide Croci, Stefania Belloni, Lucia Zerbini, Alessandro Adani, Chantal De Maria, Michele Kosmarikou, Areti Vecchi, Marco Invernizzi, Alessandro Ilariucci, Fiorella Zanelli, Magda Iori, Mauro Cimino, Luca |
author_facet | Gozzi, Fabrizio Bertolini, Marco Gentile, Pietro Verzellesi, Laura Trojani, Valeria De Simone, Luca Bolletta, Elena Mastrofilippo, Valentina Farnetti, Enrico Nicoli, Davide Croci, Stefania Belloni, Lucia Zerbini, Alessandro Adani, Chantal De Maria, Michele Kosmarikou, Areti Vecchi, Marco Invernizzi, Alessandro Ilariucci, Fiorella Zanelli, Magda Iori, Mauro Cimino, Luca |
author_sort | Gozzi, Fabrizio |
collection | PubMed |
description | Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL) and vitritis in uveitis. We studied AS-OCT images from 28 patients (11 with biopsy-proven VRL and 17 with differential diagnosis uveitis) using publicly available radiomics software written in MATLAB. Patients were divided into two balanced groups: training and testing. Overall, 3260/3705 (88%) AS-OCT images met our defined quality criteria, making them eligible for analysis. We studied five different sets of grey-level samplings (16, 32, 64, 128, and 256 levels), finding that 128 grey levels performed the best. We selected the five most effective radiomic features ranked by the ability to predict the class (VRL or uveitis). We built a classification model using the xgboost python function; through our model, 87% of eyes were correctly diagnosed as VRL or uveitis, regardless of exam technique or lens status. Areas under the receiver operating characteristic curves (AUC) in the 128 grey-level model were 0.95 [CI 0.94, 0.96] and 0.84 for training and testing datasets, respectively. This preliminary retrospective study highlights how AS-OCT can support ophthalmologists when there is clinical suspicion of VRL. |
format | Online Article Text |
id | pubmed-10378347 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103783472023-07-29 Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma Gozzi, Fabrizio Bertolini, Marco Gentile, Pietro Verzellesi, Laura Trojani, Valeria De Simone, Luca Bolletta, Elena Mastrofilippo, Valentina Farnetti, Enrico Nicoli, Davide Croci, Stefania Belloni, Lucia Zerbini, Alessandro Adani, Chantal De Maria, Michele Kosmarikou, Areti Vecchi, Marco Invernizzi, Alessandro Ilariucci, Fiorella Zanelli, Magda Iori, Mauro Cimino, Luca Diagnostics (Basel) Article Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal lymphoma (VRL) and vitritis in uveitis. We studied AS-OCT images from 28 patients (11 with biopsy-proven VRL and 17 with differential diagnosis uveitis) using publicly available radiomics software written in MATLAB. Patients were divided into two balanced groups: training and testing. Overall, 3260/3705 (88%) AS-OCT images met our defined quality criteria, making them eligible for analysis. We studied five different sets of grey-level samplings (16, 32, 64, 128, and 256 levels), finding that 128 grey levels performed the best. We selected the five most effective radiomic features ranked by the ability to predict the class (VRL or uveitis). We built a classification model using the xgboost python function; through our model, 87% of eyes were correctly diagnosed as VRL or uveitis, regardless of exam technique or lens status. Areas under the receiver operating characteristic curves (AUC) in the 128 grey-level model were 0.95 [CI 0.94, 0.96] and 0.84 for training and testing datasets, respectively. This preliminary retrospective study highlights how AS-OCT can support ophthalmologists when there is clinical suspicion of VRL. MDPI 2023-07-23 /pmc/articles/PMC10378347/ /pubmed/37510195 http://dx.doi.org/10.3390/diagnostics13142451 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gozzi, Fabrizio Bertolini, Marco Gentile, Pietro Verzellesi, Laura Trojani, Valeria De Simone, Luca Bolletta, Elena Mastrofilippo, Valentina Farnetti, Enrico Nicoli, Davide Croci, Stefania Belloni, Lucia Zerbini, Alessandro Adani, Chantal De Maria, Michele Kosmarikou, Areti Vecchi, Marco Invernizzi, Alessandro Ilariucci, Fiorella Zanelli, Magda Iori, Mauro Cimino, Luca Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma |
title | Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma |
title_full | Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma |
title_fullStr | Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma |
title_full_unstemmed | Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma |
title_short | Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma |
title_sort | artificial intelligence-assisted processing of anterior segment oct images in the diagnosis of vitreoretinal lymphoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378347/ https://www.ncbi.nlm.nih.gov/pubmed/37510195 http://dx.doi.org/10.3390/diagnostics13142451 |
work_keys_str_mv | AT gozzifabrizio artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT bertolinimarco artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT gentilepietro artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT verzellesilaura artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT trojanivaleria artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT desimoneluca artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT bollettaelena artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT mastrofilippovalentina artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT farnettienrico artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT nicolidavide artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT crocistefania artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT bellonilucia artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT zerbinialessandro artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT adanichantal artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT demariamichele artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT kosmarikouareti artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT vecchimarco artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT invernizzialessandro artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT ilariuccifiorella artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT zanellimagda artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT iorimauro artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma AT ciminoluca artificialintelligenceassistedprocessingofanteriorsegmentoctimagesinthediagnosisofvitreoretinallymphoma |