Cargando…
Usefulness of Heat Map Explanations for Deep-Learning-Based Electrocardiogram Analysis
Deep neural networks are complex machine learning models that have shown promising results in analyzing high-dimensional data such as those collected from medical examinations. Such models have the potential to provide fast and accurate medical diagnoses. However, the high complexity makes deep neur...
Autores principales: | Storås, Andrea M., Andersen, Ole Emil, Lockhart, Sam, Thielemann, Roman, Gnesin, Filip, Thambawita, Vajira, Hicks, Steven A., Kanters, Jørgen K., Strümke, Inga, Halvorsen, Pål, Riegler, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378376/ https://www.ncbi.nlm.nih.gov/pubmed/37510089 http://dx.doi.org/10.3390/diagnostics13142345 |
Ejemplares similares
-
Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images
por: Thambawita, Vajira, et al.
Publicado: (2021) -
On evaluation metrics for medical applications of artificial intelligence
por: Hicks, Steven A., et al.
Publicado: (2022) -
Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
por: Hicks, Steven A., et al.
Publicado: (2021) -
DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
por: Thambawita, Vajira, et al.
Publicado: (2021) -
VISEM-Tracking, a human spermatozoa tracking dataset
por: Thambawita, Vajira, et al.
Publicado: (2023)