Cargando…
Multilayer Perceptron Network Optimization for Chaotic Time Series Modeling
Chaotic time series are widely present in practice, but due to their characteristics—such as internal randomness, nonlinearity, and long-term unpredictability—it is difficult to achieve high-precision intermediate or long-term predictions. Multi-layer perceptron (MLP) networks are an effective tool...
Autores principales: | Qiao, Mu, Liang, Yanchun, Tavares, Adriano, Shi, Xiaohu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378385/ https://www.ncbi.nlm.nih.gov/pubmed/37509920 http://dx.doi.org/10.3390/e25070973 |
Ejemplares similares
-
Novel Low-Power Construction of Chaotic S-Box in Multilayer Perceptron
por: Ren, Runtao, et al.
Publicado: (2022) -
Multilayer perceptrons
por: Vang-Mata, Ruth
Publicado: (2020) -
Prediction model for suicide based on back propagation neural network and multilayer perceptron
por: Lyu, Juncheng, et al.
Publicado: (2022) -
Multilayer perceptron architecture optimization using parallel computing techniques
por: Castro, Wilson, et al.
Publicado: (2017) -
Sliding window time series forecasting with multilayer perceptron and multiregression of COVID-19 outbreak in Malaysia
por: Norwawi, Norita Md
Publicado: (2021)