Cargando…

An Internal Defect Detection Algorithm for Concrete Blocks Based on Local Mean Decomposition-Singular Value Decomposition and Weighted Spatial-Spectral Entropy

Within the scope of concrete internal defect detection via laser Doppler vibrometry (LDV), the acquired signals frequently suffer from low signal-to-noise ratios (SNR) due to the heterogeneity of the concrete’s material properties and its rough surface structure. Consequently, these factors make the...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Xu, Ao, Jun, Ma, Zizhu, Ma, Chunbo, Shi, Junjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378449/
https://www.ncbi.nlm.nih.gov/pubmed/37509981
http://dx.doi.org/10.3390/e25071034
_version_ 1785079769417646080
author Tian, Xu
Ao, Jun
Ma, Zizhu
Ma, Chunbo
Shi, Junjie
author_facet Tian, Xu
Ao, Jun
Ma, Zizhu
Ma, Chunbo
Shi, Junjie
author_sort Tian, Xu
collection PubMed
description Within the scope of concrete internal defect detection via laser Doppler vibrometry (LDV), the acquired signals frequently suffer from low signal-to-noise ratios (SNR) due to the heterogeneity of the concrete’s material properties and its rough surface structure. Consequently, these factors make the defect signal characteristics challenging to discern precisely. In response to this challenge, we propose an internal defect detection algorithm that incorporates local mean decomposition-singular value decomposition (LMD-SVD) and weighted spatial-spectral entropy (WSSE). Initially, the LDV vibration signal undergoes denoising via LMD and the SVD algorithms to reduce noise interference. Subsequently, the distribution of each frequency in the scan plane is analyzed utilizing the WSSE algorithm. Since the vibrational energy of the frequencies caused by the defect resonance is concentrated in the defect region, its energy distribution in the scan plane is non-uniform, resulting in a significant difference between the defect resonance frequencies’ SSE values and the other frequencies’ SSE values. This feature is used to estimate the resonant frequencies of internal defects. Ultimately, the defects are characterized based on the modal vibration patterns of the defect resonant frequencies. Tests were performed on two concrete blocks with simulated cavity defects, using an ultrasonic transducer as the excitation device to generate ultrasonic vibrations directly from the back of the blocks and applying an LDV as the acquisition device to collect vibration signals from their front sides. The results demonstrate the algorithm’s capacity to effectively pinpoint the information on the location and shape of shallow defects within the concrete, underscoring its practical significance for concrete internal defect detection in practical engineering scenarios.
format Online
Article
Text
id pubmed-10378449
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103784492023-07-29 An Internal Defect Detection Algorithm for Concrete Blocks Based on Local Mean Decomposition-Singular Value Decomposition and Weighted Spatial-Spectral Entropy Tian, Xu Ao, Jun Ma, Zizhu Ma, Chunbo Shi, Junjie Entropy (Basel) Article Within the scope of concrete internal defect detection via laser Doppler vibrometry (LDV), the acquired signals frequently suffer from low signal-to-noise ratios (SNR) due to the heterogeneity of the concrete’s material properties and its rough surface structure. Consequently, these factors make the defect signal characteristics challenging to discern precisely. In response to this challenge, we propose an internal defect detection algorithm that incorporates local mean decomposition-singular value decomposition (LMD-SVD) and weighted spatial-spectral entropy (WSSE). Initially, the LDV vibration signal undergoes denoising via LMD and the SVD algorithms to reduce noise interference. Subsequently, the distribution of each frequency in the scan plane is analyzed utilizing the WSSE algorithm. Since the vibrational energy of the frequencies caused by the defect resonance is concentrated in the defect region, its energy distribution in the scan plane is non-uniform, resulting in a significant difference between the defect resonance frequencies’ SSE values and the other frequencies’ SSE values. This feature is used to estimate the resonant frequencies of internal defects. Ultimately, the defects are characterized based on the modal vibration patterns of the defect resonant frequencies. Tests were performed on two concrete blocks with simulated cavity defects, using an ultrasonic transducer as the excitation device to generate ultrasonic vibrations directly from the back of the blocks and applying an LDV as the acquisition device to collect vibration signals from their front sides. The results demonstrate the algorithm’s capacity to effectively pinpoint the information on the location and shape of shallow defects within the concrete, underscoring its practical significance for concrete internal defect detection in practical engineering scenarios. MDPI 2023-07-09 /pmc/articles/PMC10378449/ /pubmed/37509981 http://dx.doi.org/10.3390/e25071034 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tian, Xu
Ao, Jun
Ma, Zizhu
Ma, Chunbo
Shi, Junjie
An Internal Defect Detection Algorithm for Concrete Blocks Based on Local Mean Decomposition-Singular Value Decomposition and Weighted Spatial-Spectral Entropy
title An Internal Defect Detection Algorithm for Concrete Blocks Based on Local Mean Decomposition-Singular Value Decomposition and Weighted Spatial-Spectral Entropy
title_full An Internal Defect Detection Algorithm for Concrete Blocks Based on Local Mean Decomposition-Singular Value Decomposition and Weighted Spatial-Spectral Entropy
title_fullStr An Internal Defect Detection Algorithm for Concrete Blocks Based on Local Mean Decomposition-Singular Value Decomposition and Weighted Spatial-Spectral Entropy
title_full_unstemmed An Internal Defect Detection Algorithm for Concrete Blocks Based on Local Mean Decomposition-Singular Value Decomposition and Weighted Spatial-Spectral Entropy
title_short An Internal Defect Detection Algorithm for Concrete Blocks Based on Local Mean Decomposition-Singular Value Decomposition and Weighted Spatial-Spectral Entropy
title_sort internal defect detection algorithm for concrete blocks based on local mean decomposition-singular value decomposition and weighted spatial-spectral entropy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378449/
https://www.ncbi.nlm.nih.gov/pubmed/37509981
http://dx.doi.org/10.3390/e25071034
work_keys_str_mv AT tianxu aninternaldefectdetectionalgorithmforconcreteblocksbasedonlocalmeandecompositionsingularvaluedecompositionandweightedspatialspectralentropy
AT aojun aninternaldefectdetectionalgorithmforconcreteblocksbasedonlocalmeandecompositionsingularvaluedecompositionandweightedspatialspectralentropy
AT mazizhu aninternaldefectdetectionalgorithmforconcreteblocksbasedonlocalmeandecompositionsingularvaluedecompositionandweightedspatialspectralentropy
AT machunbo aninternaldefectdetectionalgorithmforconcreteblocksbasedonlocalmeandecompositionsingularvaluedecompositionandweightedspatialspectralentropy
AT shijunjie aninternaldefectdetectionalgorithmforconcreteblocksbasedonlocalmeandecompositionsingularvaluedecompositionandweightedspatialspectralentropy
AT tianxu internaldefectdetectionalgorithmforconcreteblocksbasedonlocalmeandecompositionsingularvaluedecompositionandweightedspatialspectralentropy
AT aojun internaldefectdetectionalgorithmforconcreteblocksbasedonlocalmeandecompositionsingularvaluedecompositionandweightedspatialspectralentropy
AT mazizhu internaldefectdetectionalgorithmforconcreteblocksbasedonlocalmeandecompositionsingularvaluedecompositionandweightedspatialspectralentropy
AT machunbo internaldefectdetectionalgorithmforconcreteblocksbasedonlocalmeandecompositionsingularvaluedecompositionandweightedspatialspectralentropy
AT shijunjie internaldefectdetectionalgorithmforconcreteblocksbasedonlocalmeandecompositionsingularvaluedecompositionandweightedspatialspectralentropy