Cargando…
A Physics-Informed Generative Car-Following Model for Connected Autonomous Vehicles
This paper proposes a novel hybrid car-following model: the physics-informed conditional generative adversarial network (PICGAN), designed to enhance multi-step car-following modeling in mixed traffic flow scenarios. This hybrid model leverages the strengths of both physics-based and deep-learning-b...
Autores principales: | Ma, Lijing, Qu, Shiru, Song, Lijun, Zhang, Zhiteng, Ren, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378484/ https://www.ncbi.nlm.nih.gov/pubmed/37509998 http://dx.doi.org/10.3390/e25071050 |
Ejemplares similares
-
Application of conditional generative adversarial network to multi-step car-following modeling
por: Ma, Lijing, et al.
Publicado: (2023) -
Controlling the Connected Vehicle with Bi-Directional Information: Improved Car-Following Models and Stability Analysis
por: Yi, Ziwei, et al.
Publicado: (2021) -
An Investigation into the Appropriateness of Car-Following Models in Assessing Autonomous Vehicles
por: Higatani, Akito, et al.
Publicado: (2021) -
Vehicle emissions and consumer information in car advertisements
por: Wilson, Nick, et al.
Publicado: (2008) -
A Blockchain Framework for Securing Connected and Autonomous Vehicles
por: Rathee, Geetanjali, et al.
Publicado: (2019)