Cargando…
Feature-Based Complexity Measure for Multinomial Classification Datasets
Machine learning algorithms are frequently used for classification problems on tabular datasets. In order to make informed decisions about model selection and design, it is crucial to gain meaningful insights into the complexity of these datasets. Feature-based complexity measures are a set of compl...
Autores principales: | Erwin, Kyle, Engelbrecht, Andries |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378522/ https://www.ncbi.nlm.nih.gov/pubmed/37509947 http://dx.doi.org/10.3390/e25071000 |
Ejemplares similares
-
Ensemble Merit Merge Feature Selection for Enhanced Multinomial Classification in Alzheimer's Dementia
por: Sivapriya, T. R., et al.
Publicado: (2015) -
A Geometric Approach to Average Problems on Multinomial and Negative Multinomial Models
por: Li, Mingming, et al.
Publicado: (2020) -
RAMRSGL: A Robust Adaptive Multinomial Regression Model for Multicancer Classification
por: Wang, Lei, et al.
Publicado: (2021) -
Intrinsic Dimension Estimation-Based Feature Selection and Multinomial Logistic Regression for Classification of Bearing Faults Using Compressively Sampled Vibration Signals
por: Ahmed, Hosameldin O. A., et al.
Publicado: (2022) -
The multinomial index: a robust measure of reproductive skew
por: Ross, Cody T., et al.
Publicado: (2020)