Cargando…
A Hybrid Recommender System Based on Autoencoder and Latent Feature Analysis
A recommender system (RS) is highly efficient in extracting valuable information from a deluge of big data. The key issue of implementing an RS lies in uncovering users’ latent preferences on different items. Latent Feature Analysis (LFA) and deep neural networks (DNNs) are two of the most popular a...
Autores principales: | Guo, Shangzhi, Liao, Xiaofeng, Li, Gang, Xian, Kaiyi, Li, Yuhang, Liang, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378603/ https://www.ncbi.nlm.nih.gov/pubmed/37510009 http://dx.doi.org/10.3390/e25071062 |
Ejemplares similares
-
Hybrid autoencoder with orthogonal latent space for robust population structure inference
por: Yuan, Meng, et al.
Publicado: (2023) -
Optimization of physical quantities in the autoencoder latent space
por: Park, S. M., et al.
Publicado: (2022) -
Defect-Repairable Latent Feature Extraction of Driving Behavior via a Deep Sparse Autoencoder
por: Liu, Hailong, et al.
Publicado: (2018) -
Attention Autoencoder for Generative Latent Representational Learning in Anomaly Detection
por: Oluwasanmi, Ariyo, et al.
Publicado: (2021) -
Cross-Domain Recommendation Based on Sentiment Analysis and Latent Feature Mapping
por: Wang, Yongpeng, et al.
Publicado: (2020)