Cargando…
Upgrading the Fusion of Imprecise Classifiers
Imprecise classification is a relatively new task within Machine Learning. The difference with standard classification is that not only is one state of the variable under study determined, a set of states that do not have enough information against them and cannot be ruled out is determined as well....
Autores principales: | Moral-García, Serafín, Benítez, María D., Abellán, Joaquín |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378668/ https://www.ncbi.nlm.nih.gov/pubmed/37510035 http://dx.doi.org/10.3390/e25071088 |
Ejemplares similares
-
Imprecise Classification with Non-parametric Predictive Inference
por: Moral, Serafín, et al.
Publicado: (2020) -
A Robust Dynamic Classifier Selection Approach for Hyperspectral Images with Imprecise Label Information
por: Li, Meizhu, et al.
Publicado: (2020) -
A Variation of the Algorithm to Achieve the Maximum Entropy for Belief Functions
por: Abellán, Joaquín, et al.
Publicado: (2023) -
Introduction to imprecise probabilities
por: Augustin, Thomas, et al.
Publicado: (2014) -
Contributions of imprecision in PET‐MRI rigid registration to imprecision in amyloid PET
SUVR measurements
por: Schwarz, Christopher G., et al.
Publicado: (2017)