Cargando…

Identification and Characterization of Novel SPHINX/BMMF-like DNA Sequences Isolated from Non-Bovine Foods

Sixteen novel circular rep-encoding DNA sequences with high sequence homologies to previously described SPHINX and BMMF sequences were isolated for the first time from non-bovine foods (pork, wild boar, chicken meat, Alaska pollock, pangasius, black tiger shrimp, apple, carrot, and sprouts from alfa...

Descripción completa

Detalles Bibliográficos
Autores principales: Habermann, Diana, Klempt, Martin, Franz, Charles M. A. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378824/
https://www.ncbi.nlm.nih.gov/pubmed/37510212
http://dx.doi.org/10.3390/genes14071307
Descripción
Sumario:Sixteen novel circular rep-encoding DNA sequences with high sequence homologies to previously described SPHINX and BMMF sequences were isolated for the first time from non-bovine foods (pork, wild boar, chicken meat, Alaska pollock, pangasius, black tiger shrimp, apple, carrot, and sprouts from alfalfa, radish, and broccoli). The phylogenetic analysis of the full-length circular genomes grouped these together with previously described representatives of SPHINX/BMMF group 1 and 2 sequences (eight in each group). The characterization of genome lengths, genes present, and conserved structures confirmed their relationship to the known SPHINX/BMMF sequences. Further analysis of iteron-like tandem repeats of SPHINX/BMMF group 1-related genomes revealed a correlation with both full-length sequence tree branches as well as Rep protein sequence tree branches and was able to differentiate subtypes of SPHINX/BMMF group 1 members. For the SPHINX/BMMF group 2 members, a distinct grouping of sequences into two clades (A and B) with subgroups could be detected. A deeper investigation of potential functional regions upstream of the rep gene of the new SPHINX/BMMF group 2 sequences revealed homologies to the dso and sso regions of known plasmid groups that replicate via the rolling circle mechanism. Phylogenetic analyses were accomplished by a Rep protein sequence analysis of different ssDNA viruses, pCRESS, and plasmids with the known replication mechanism, as this yielded deeper insights into the relationship of SPHINX/BMMF group 1 and 2 Rep proteins. A clear relation of these proteins to the Rep proteins of plasmids could be confirmed. Interestingly, for SPHINX/BMMF group 2 members, the relationship to rolling circle replication plasmids could also be verified. Furthermore, a relationship of SPHINX/BMMF group 1 Rep proteins to theta-replicating plasmid Reps is discussed.