Cargando…
A Self-Supervised Anomaly Detector of Fruits Based on Hyperspectral Imaging
Hyperspectral imaging combined with chemometric approaches is proven to be a powerful tool for the quality evaluation and control of fruits. In fruit defect-detection scenarios, developing an unsupervised anomaly detection framework is vital, as defect sample preparation is labor-intensive and time-...
Autores principales: | Liu, Yisen, Zhou, Songbin, Wan, Zhiyong, Qiu, Zefan, Zhao, Lulu, Pang, Kunkun, Li, Chang, Yin, Zexuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378827/ https://www.ncbi.nlm.nih.gov/pubmed/37509761 http://dx.doi.org/10.3390/foods12142669 |
Ejemplares similares
-
An Unsupervised Deep Hyperspectral Anomaly Detector
por: Ma, Ning, et al.
Publicado: (2018) -
Detection of Adulteration in Infant Formula Based on Ensemble Convolutional Neural Network and Near-Infrared Spectroscopy
por: Liu, Yisen, et al.
Publicado: (2021) -
HIDSAG: Hyperspectral Image Database for Supervised Analysis in Geometallurgy
por: Ehrenfeld, Alejandro, et al.
Publicado: (2023) -
A Semi-Supervised Reduced-Space Method for Hyperspectral Imaging Segmentation
por: Aletti, Giacomo, et al.
Publicado: (2021) -
Structured Background Modeling for Hyperspectral Anomaly Detection
por: Li, Fei, et al.
Publicado: (2018)