Cargando…
Fair Max–Min Diversity Maximization in Streaming and Sliding-Window Models †
Diversity maximization is a fundamental problem with broad applications in data summarization, web search, and recommender systems. Given a set X of n elements, the problem asks for a subset S of [Formula: see text] elements with maximum diversity, as quantified by the dissimilarities among the elem...
Autores principales: | Wang, Yanhao, Fabbri, Francesco, Mathioudakis, Michael, Li, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378839/ https://www.ncbi.nlm.nih.gov/pubmed/37510013 http://dx.doi.org/10.3390/e25071066 |
Ejemplares similares
-
Application and Algorithm: Maximal Motif Discovery for Biological Data in a Sliding Window
por: Alshammary, Miznah H., et al.
Publicado: (2020) -
Robust min-max regret covering problems
por: Coco, Amadeu A., et al.
Publicado: (2022) -
Reducing False Negative Reads in RFID Data Streams Using an Adaptive Sliding-Window Approach
por: Massawe, Libe Valentine, et al.
Publicado: (2012) -
Streaming Feature Selection for Multi-Label Data with Dynamic Sliding Windows and Feature Repulsion Loss
por: Li, Yu, et al.
Publicado: (2019) -
Heuristics and Learning Models for Dubins MinMax Traveling Salesman Problem
por: Nayak, Abhishek, et al.
Publicado: (2023)