Cargando…

Prognostic Significance of Activated Monocytes in Patients with ST-Elevation Myocardial Infarction

Circulating monocytes have different subsets, including classical (CD14++CD16−), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++), which play different roles in cardiovascular physiology and disease progression. The predictive value of each subset for adverse clinical outcomes in patients...

Descripción completa

Detalles Bibliográficos
Autores principales: Abo-Aly, Mohamed, Shokri, Elica, Chelvarajan, Lakshman, Tarhuni, Wadea M., Tripathi, Himi, Abdel-Latif, Ahmed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378894/
https://www.ncbi.nlm.nih.gov/pubmed/37511100
http://dx.doi.org/10.3390/ijms241411342
Descripción
Sumario:Circulating monocytes have different subsets, including classical (CD14++CD16−), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++), which play different roles in cardiovascular physiology and disease progression. The predictive value of each subset for adverse clinical outcomes in patients with coronary artery disease is not fully understood. We sought to evaluate the prognostic efficacy of each monocyte subset in patients with ST-elevation myocardial infarction (STEMI). We recruited 100 patients with STEMI who underwent primary percutaneous coronary intervention (PCI). Blood samples were collected at the time of presentation to the hospital (within 6 h from onset of symptoms, baseline (BL)) and then at 3, 6, 12, and 24 h after presentation. Monocytes were defined as CD45+/HLA-DR+ and then subdivided based on the expression of CD14, CD16, CCR2, CD11b, and CD42. The primary endpoint was a composite of all-cause death, hospitalization for heart failure, stent thrombosis, in-stent restenosis, and recurrent myocardial infarction. Univariate and multivariate Cox proportional hazards models, including baseline comorbidities, were performed. The mean age of our cohort was 58.9 years and 25% of our patients were females. Patients with high levels (above the median) of CD14+CD16++ monocytes showed an increased risk for the primary endpoint in comparison to patients with low levels; adjusted hazard ratio (aHR) for CD14+/CD16++ cells was 4.3 (95% confidence interval (95% CI) 1.2–14.8, p = 0.02), for CD14+/CD16++/CCR2+ cells was 3.82 (95% CI 1.06–13.7, p = 0.04), for CD14+/CD16++/CD42b+ cells was 3.37 (95% CI 1.07–10.6, p = 0.03), for CD14+/CD16++/CD11b+ was 5.17 (95% CI 1.4–18.0, p = 0.009), and for CD14+ HLA-DR+ was 7.5 (95% CI 2.0–28.5, p = 0.002). CD14++CD16−, CD14++CD16+, and their CD11b+, CCR2+, and CD42b+ aggregates were not significantly predictive for our composite endpoint. Our study shows that CD14+ CD16++ monocytes and their subsets expressing CCR2, CD42, and CD11b could be important predictors of clinical outcomes in patients with STEMI. Further studies with a larger sample size and different coronary artery disease phenotypes are needed to verify the findings.